flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Arup's Solarleaf façade system wins Zumtobel innovation award

Arup's Solarleaf façade system wins Zumtobel innovation award

The system uses the bio-chemical process of photosynthesis to absorb CO2 emissions, while cultivating microalgae to generate biomass and heat as renewable energy resources.


By Zumtobel Group Award | September 25, 2014
The Zumtobel Group Award honors contemporary realised or conceptual works of exceptional innovative content, design, technology and construction. Submissions must make a significant contribution to greater humanity and sustainability in the built environment. 
 
The winning project this year came from the Applied Innovations category--Arup Deutschland won with the "Solarleaf" facade system in Hamburg, Germany. The façade system was developed by Arup Deutschland in collaboration with SSC Strategic Science Consult GmbH and Colt International GmbH, with subsidies from the federal research initiative ZukunftBau. The system was first installed in a four-storey residential building that was designed by SPLITTERWERK architects for the 2013 International Building Exhibition (IBA) in Hamburg.
 
It showcases the first Solar-Leaf façade: a building integrated system absorbing CO2 emissions, while cultivating microalgae to generate biomass and heat as renewable energy resources. The environment for photosynthesis is provided by glass photobioreactors installed on the southwest and southeast elevations.
 
The SolarLeaf façade utilises the bio-chemical process of photosynthesis for energy efficient buildings and building clusters. There are three main benefits of the system: a) Generation of high-quality biomass for energetic use or as a resource for food and pharmaceutical industry (urban farming), b) generation of solar thermal heat and c) the use as a dynamic shading device.
 
Cultivating microalgae in flat panel photobioreactors requires no additional land-use and is largely independent from weather conditions, allowing installations in urban environments. A floatation device harvests the BIQ’s algal biomass automatically. The carbon required to feed the algae is taken from a combustion process in proximity of the façade installation to implement a short carbon cycle, preventing carbon emissions to contribute to climate change. Microalgae contain high-quality proteins, vitamins and amino acids that make it a valuable resource for the food and pharmaceutical industry.
 
The BIQ project is a milestone in opening up this value chain and creating a subsequent infrastructure. The developed bioreactors also capture solar thermal heat with an efficiency of approx. 50%. At the BIQ the heat is extracted by the use of heat exchangers and the temperature levels of the excess heat can be increased by using a heat pump for the supply of hot water or heating the building or stored geothermally. The system comprises bioreactor panels, associated mechanical services and the control unit to link the mass flows and optimize the efficiency of the building. The BIQ plays an important role in establishing surplus energy and zero carbon building clusters for the future.
 
© Colt, SSC, Arup
 
 
© Colt, SSC, Arup
 
 
© Colt, SSC, Arup
 
 
© Colt, SSC, Arup
 
 
© Colt, SSC, Arup

Related Stories

Building Materials | Mar 3, 2017

Perkins+Will white paper: Antimicrobial building products should be avoided whenever possible

Antimicrobial products contain ingredients that may have adverse environmental or human health impacts.

Building Materials | Feb 15, 2017

New metamaterial cools roofs without any energy consumption

The material is barely thicker than aluminum foil and can be economically manufactured for large-scale residential and commercial applications.

Building Materials | Jan 9, 2017

Architects and researchers are developing new techniques for building in space

As setting foot on Mars becomes a more realistic goal, the search for how to best develop Architecture for the Red Planet is heating up.

Walls and Partitions | Dec 14, 2016

New wall system eliminates the need for most studs

The company, BamCore, says its new product can save money and quicken the framing process.

75 Top Building Products | Dec 7, 2016

101 Top Products: Building Envelope

Among the best building envelope products included in BD+C's inaugural Top 101 Products report are BASF's Neopor Plus Insulation, Dri-Design's Shadow Series Aluminum Panels, and Garland's Optimax Roof Membrane.

Building Materials | Dec 2, 2016

These are the top 10 tile trends to keep an eye on in 2017

Design styles such as bits & pieces, gritty chic, and metallics are among the ten tile trends to watch as we enter 2017.

Sponsored | Building Materials | Aug 22, 2016

Mind the Gap

Temporary Expansion Joints in Large Structures

boombox1 - default
boombox2 -
native1 -

More In Category


Codes and Standards

Updated document details methods of testing fenestration for exterior walls

The Fenestration and Glazing Industry Alliance (FGIA) updated a document serving a recommended practice for determining test methodology for laboratory and field testing of exterior wall systems. The document pertains to products covered by an AAMA standard such as curtain walls, storefronts, window walls, and sloped glazing. AAMA 501-24, Methods of Test for Exterior Walls was last updated in 2015. 



halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021