flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Setting the Green Standard For Community Colleges

Setting the Green Standard For Community Colleges

A visionary president and aninnovative Building Team take a community college project to a new level of sustainability.


By By Dave Barista, Managing Editor | August 11, 2010
This article first appeared in the 200908 issue of BD+C.
Photos: Robert Canfield Photography


“Ohlone College Newark Campus Is the Greenest College in the World!”

That bold statement was the official tagline of the festivities surrounding the August 2008 grand opening of Ohlone College's LEED Platinum Newark (Calif.) Center for Health Sciences and Technology.

The 130,000-sf, $58 million community college facility stacks up against some of the greenest college buildings in the world, with near-off-the-grid renewable energy performance and advanced stormwater management techniques. But the most intriguing fact about Ohlone's new über-green facility is that it wasn't even planned as a green building, let alone one that could achieve the USGBC's highest rating.
                                          

Two enthalpy wheels, each 16 feet in diameter, recover up to 95% of the energy from the building’s exhaust air, reducing energy use. Large circular windows provide close-up views of the wheels (below), which are situated on either side of the main lobby (top).


The original 2003 master plan by the San Francisco office of Perkins+Will envisioned a typical all-in-one community college building to replace rented classroom facilities. The facility was designed to house classroom and laboratory spaces for the college's biotechnology, health sciences, emerging technology, and environmental studies programs.

LEED certification was not a goal, noted Perkins+Will's Karen Cribbins-Kulkin, a design architect on the project. “We were keeping score ourselves, but we didn't share our point tallies with the client,” said Cribbins-Kulkin. “We called it 'sustainability by stealth.'”

Not until six months later did the Newark Center project turn a much deeper shade of green. That's when Douglas Treadway, PhD, entered the scene as Ohlone's new president and district superintendent. 
                                                    

The building’s horizontal ground-coil geothermal system is composed of 26 miles of pipe buried about eight feet below ground. The system minimizes the amount of energy required for heating and cooling the interior spaces by taking advantage of the stable ground temperature (about 61°F) to temper the incoming air.


“Dr. Treadway looked at the existing master plan and decided to put the project on hold for a year so we could evaluate our direction and determine if the plan represented the very best for our students, our community, and the environment,” recalled Patrice Birkedahl, Ohlone's development director.

Treadway's vision for Ohlone's Newark campus (the school's main campus is located in Fremont, Calif., near the southeast shore of San Francisco Bay) focused on setting the benchmark for community colleges in sustainable design, particularly on energy efficiency and using the environment as a teaching tool. That led the project's Building Team—which included MEP engineer Alfa Tech Consulting Engineers, general contractor Turner Construction, and architect Perkins+Will—to collaborate on a design that would take the building more than 80% off the grid and utilize the 81-acre brownfield site and adjacent estuary and federally protected wetlands as teaching tools.

Using a computer-generated model of the building, complete with a site-specific weather profile simulator and life cycle cost calculations, Alfa Tech evaluated dozens of energy conservation and on-site energy generation techniques. In the end, two common approaches—geothermal and photovoltaics—and one not-so-common technique—enthalpy heat-recovery wheels—proved to be the perfect combination for maximizing energy efficiency on the project.
                                               

During the summer months, the Newark Center’s 713 MWh, 38,000-sf photovoltaic array provides 100% of the building’s power needs.

To reduce the energy use in the classrooms and labs (which require large amounts of fresh air to comply with codes for occupancy and lab air exchange rates), the team specified two enthalpy wheels, each 16 feet in diameter, which can recover up to 95% of the energy from the exhaust air. The wheels also provide a 300% increase in the amount of filtered fresh air circulated through the facility, significantly improving the indoor air quality.

“We've recommended enthalpy wheels before, but the idea is usually scrapped because of the complexity of the structural and architectural challenges,” said Mike Lucas, a partner with Alfa Tech. “But on this project, the architect and the structural engineer jumped in without hesitation and made it happen.”

To accommodate the required 16 feet of uninterrupted space for each wheel, structural engineer SOHA devised an unusual solution: housing the wheels in large box structures that would eliminate the need for cross bracing or other structural elements that would interfere with the clear space requirement.

Perkins+Will jumped at the opportunity to showcase the giant wheels as a key green feature of the facility, situating the devices on either side of the main lobby, with large circular windows providing close-up views. Graphic screens next to the viewing windows provide information on the wheels' mechanics, real-time energy use, and thermal data.

Ohlone College's ground-coil geothermal system minimizes the amount of energy required for heating and cooling the interior spaces by taking advantage of the stable ground temperature (about 61°F) to temper the incoming air. Because of a subterranean aquifer on the site, the team could not drill the usual deep bore holes for the geothermal system. Instead, Alfa Tech had to design a system based on horizontal, or “slinky,” ground coils that would minimize any chance of aquifer penetration. In all, 26 miles of pipe were buried about eight feet below ground.

“There were people who seriously questioned the decision to use a system like this, because it's virtually unknown in the western U.S.,” said Turner Construction's Bill Jangraw. “But Alfa Tech's Mike Lucas placed his professional reputation on the line because he believed it was the right system for the job.”

The Newark Center's 713 MWh, 38,000-sf photovoltaic array—the largest installation in the East Bay—was paid for through a grant from Pacific Gas & Electric. The massive rooftop system contributes an average 82% of the electricity needed to operate the campus. During the summer months, the system takes the building off the grid completely.

Whether Ohlone College's Newark Center is in fact the “greenest college in the world” may be arguable, but it's clear that the college and its visionary president (who retired in 2008, shortly before the Newark Center was completed) have raised the bar for sustainable design in higher education.

“Here's a community college that could have done another crummy building, but its president came in with a vision, and it wasn't just superficial,” said Building Team Awards judge Corey Wieseman, AIA, LEED AP, principal with DLR Group, Chicago. “It's an owner that we'd all like to work for.”

Related Stories

| Aug 11, 2010

Stimulus funding helps get NOAA project off the ground

The award-winning design for the National Oceanic and Atmospheric Administration’s new Southwest Fisheries Science Center replacement laboratory saw its first sign of movement last month with a groundbreaking ceremony held in La Jolla, Calif. The $102 million project is funded primarily by the American Recovery and Reinvestment Act.

| Aug 11, 2010

7 Tips for Installing Moisture Barriers

If you took a poll of building envelope and construction forensic experts, it's likely that moisture barriers would be high on the list of most poorly understood products used in wall assemblies. Besides deciding which type of barrier to use under various climate conditions, Building Teams must confront the nasty matter of how to install them correctly.

| Aug 11, 2010

Recycled Pavers Elevate Rooftop Patio

The new three-story building at 3015 16th Street in Minot, N.D., houses the headquarters of building owner Investors Real Estate Trust (IRET), as well as ground-floor retail space and 71 rental apartments. The 215,000-sf mixed-use building occupies most of the small site, while parking takes up the remainder.

| Aug 11, 2010

America's Greenest Hospital

Hospitals are energy gluttons. With 24/7/365 operating schedules and stringent requirements for air quality in ORs and other clinical areas, an acute-care hospital will gobble up about twice the energy per square foot of, say, a commercial office building. It is an achievement worth noting, therefore, when a major hospital achieves LEED Platinum status, especially when that hospital attains 14 ...

| Aug 11, 2010

Research Facility Breaks the Mold

In the market for state-of-the-art biomedical research space in Boston's Longwood Medical Area? Good news: there are still two floors available in the Center for Life Science | Boston, a multi-tenant, speculative high-rise research building designed by Tsoi/Kobus & Associates, Boston, and developed by Lyme Properties, Hanover, N.

| Aug 11, 2010

Piano's 'Flying Carpet'

Italian architect Renzo Piano refers to his $294 million, 264,000-sf Modern Wing of the Art Institute of Chicago as a “temple of light.” That's all well and good, but how did Piano and the engineers from London-based Arup create an almost entirely naturally lit interior while still protecting the priceless works of art in the Institute's third-floor galleries from dangerous ultravio...

| Aug 11, 2010

3 Hospitals, 3 Building Teams, 1 Mission: Optimum Sustainability

It's big news in any city when a new billion-dollar hospital is announced. Imagine what it must be like to have not one, not two, but three such blockbusters in the works, each of them tracking LEED-NC Gold certification from the U.S. Green Building Council. That's the case in San Francisco, where three new billion-dollar-plus healthcare facilities are in various stages of design and constructi...

| Aug 11, 2010

Precast All the Way

For years, precast concrete has been viewed as a mass-produced product with no personality or visual appeal—the vanilla of building materials. Thanks to recent technological innovations in precast molds and thin veneers, however, that image is changing. As precast—concrete building components that are poured and molded offsite—continues to develop a vibrant personality all it...

| Aug 11, 2010

Great Solutions: Green Building

27. Next-Generation Green Roofs Sprout up in New York New York is not particularly known for its green roofs, but two recent projects may put the Big Apple on the map. In spring 2010, the Lincoln Center for the Performing Arts will debut one of the nation's first fully walkable green roofs. Located across from the Juilliard School in Lincoln Center's North Plaza, Illumination Lawn will consist ...

| Aug 11, 2010

Idea Center at Playhouse Square: A better idea

Through a unique partnership between a public media organization and a performing arts/education entity, a historic building in the heart of downtown Cleveland has been renovated as a model of sustainability and architectural innovation. Playhouse Square, which had been working for more than 30 years to revitalize the city's arts district, teamed up with ideastream, a newly formed media group t...

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021