flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Breakthrough concrete mix could reduce carbon emissions by 60%

Breakthrough concrete mix could reduce carbon emissions by 60%

Scientists at MIT have found a way to decrease the carbon emissions that result from concrete production: reducing the ratio of calcium to the silicate-rich clay. 


By BD+C Staff | September 30, 2014

Concrete is ubiquitous in our world, as is concern about carbon emissions. The creation of concrete is a major source of carbon emissions, because the calcium-based substances that make it up are heated at high temperatures to form the cement.

But scientists at MIT may have found a way to decrease the carbon emissions that result from concrete production: reducing the ratio of calcium to the silicate-rich clay. 

Normally, concrete is made by mixing gravel, water, sand, and cement, Gizmag reports. The cement is produced by heating calcium-rich materials (e.g., limestone) at temperatures up to 2,732 F, and researchers say that this part of the process produces the majority of the carbon emissions. 

The MIT research team examined the makeup of the concrete, and found that a calcium to silica ratio of 1.5 is the optimal mix for reducing emissions and producing quality concrete. In the industry, these ratios can vary from 1.2 to 2.2, though 1.7 is the cement production standard. Changing the standard ratio to 1.5, researchers say, could reduce carbon emissions by as much as 60%. 

This mix of concrete was also shown to have a higher resistance to fractures. According to Gizmag, the researchers claim that "this is due to the molecular structure transforming from a tightly ordered crystalline to a disordered glassy structure." Regardless of the reason why, the 1.5 ratio concrete has twice the mechanical resistance to fractures of normal cement. 

Because the analysis of this concrete mix was carried out on a molecular level, it remains to be seen whether or not these results will remain the same in engineering-scale applications. This research was published in the journal Nature Communications.

Related Stories

Sponsored | Concrete | Jun 17, 2015

To Core or not to core?

Sponsored | Flooring | May 18, 2015

Suburban L.A. high school battles moisture-soaked flooring

School officials had to take action when popped flooring created trip hazards

Multifamily Housing | Mar 16, 2015

New Jersey Supreme Court puts control of affordable housing agency in the courts

The court said the state’s affordable housing agency had failed to do its job, and effectively transferred the agency's regulatory authority to lower courts.

| Nov 7, 2014

Prefab helps Valparaiso student residence project meet an ambitious deadline

Few colleges or universities have embraced prefabrication more wholeheartedly than Valparaiso (Ind.) University. The Lutheran-based institution completed a $27 million residence hall this past summer in which the structural elements were all precast.

| Aug 5, 2014

New bomb-proof concrete mixture used in One World Trade Center

The new concrete mix deforms instead of breaking, removing the threat of flying debris in an explosive attack. 

| Jul 11, 2014

Are these LEGO-like blocks the future of construction?

Kite Bricks proposes a more efficient way of building with its newly developed Smart Bricks system.

| Jun 12, 2014

Austrian university develops 'inflatable' concrete dome method

Constructing a concrete dome is a costly process, but this may change soon. A team from the Vienna University of Technology has developed a method that allows concrete domes to form with the use of air and steel cables instead of expensive, timber supporting structures.

| May 15, 2014

'Virtually indestructible': Utah architect applies thin-shell dome concept for safer schools

At $94 a square foot and "virtually indestructible," some school districts in Utah are opting to build concrete dome schools in lieu of traditional structures. 

| Feb 14, 2014

Must see: Developer stacks shipping containers atop grain silos to create student housing tower

Mill Junction will house up to 370 students and is supported by 50-year-old grain silos.

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021