flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

3 reasons to apply computational fluid dynamics on your next project

3 reasons to apply computational fluid dynamics on your next project

From right-sizing mechanical systems to understanding the impact of design alternatives, CFD offers a host of benefits for the Building Team. 


By Jason Pfeiffer | February 27, 2014
This CFD model depicts thermal stratification within a conference room to assess
This CFD model depicts thermal stratification within a conference room to assess occupant comfort as an example of how CFD can b

A misperception about computational fluid dynamics is that it is only effective when designing a jet plane, a formula one car, or an outer space rocket. Today, building designers can apply the same basic principles in fluid dynamics tested on these exotic high-flyers to common building airflows. 

Here are three reasons why you might consider CFD for your next building project. 

1. Best guess approach — Although guided by ASHRAE standards, current HVAC specs are usually “best guesses” based on experience with various equipment and designs. Most engineers oversize HVAC units because they just don’t “know” exactly where thermal differentials including cyclic variations, radiant temperature asymmetries, and drafts will happen in an operating building. Using CFD insight, you can right-size HVAC solutions to eliminate redundant equipment and save costs. 

2. BIM modeling is standard  — The widespread adoption of BIM has led to an unprecedented ability to model new designs. Now, engineers and designers routinely run time and light studies, finite element analyses and energy efficiency studies working with the BIM model. The extension of a building model to CFD analysis is not the leap it may have been ten years ago. Now, airflow designers can run through a number of scenarios for ventilation and heating using different strategies inside the actual building model. 

5 benefits of CFD analysis


1. Assess ventilation effectiveness before construction
2. Eliminate equipment redundancy
3. Weigh equipment costs against performance and environmental requirements
4. Substantiate performance claims
5. Locate supply/return for optimal airflow

3. Seeing is believing — CFD analyses produce easy to understand visuals that show the impact of design alternatives, allowing architects to move walls, alter service conduit pathways and change glazing effects—among other things—to improve energy efficiency and occupant comfort. These visuals are crucial in explaining to owners the impact of design changes, airflow strategies and or equipment purchases. When everyone can easily grasp the results of the sophisticated math behind CFD, you can reach agreement more quickly and with a higher level of confidence. 

 

Typically, designers do not have the time, knowledge or technology to perform a CFD analysis. The alternative is to work with outsourced CFD experts to generate the best airflow strategy for your project. The key here is to find the right fit. Make sure your CFD supplier has a demonstrated range of experience with the kind of building you are designing. 

Your CFD partners should recognize precisely how to properly model an environment to reveal key performance insights—thermal stratification and restricted flows, for example. In addition, your CFD consultant should be collaborative—working with the design team to explore options for improvement. 

No matter what kind of project you are designing—a new manufacturing plant, a new residential building or healthcare institution, or a retrofit of a landmark office complex—a proper CFD analysis will save money in initial capital costs and far more over time in building operating and energy costs. As a designer, you can provide your client with a better, less expensive solution. 

About the Author
Jason Pfeiffer is Director CFD Analysis Consulting with IMAGINiT Technologies. He can be reached at jpfeiffer@rand.com.

Related Stories

| Apr 12, 2012

Solar PV carport, electrical charging stations unveiled in California

Project contractor Oltman Construction noted that the carport provides shaded area for 940 car stalls and generates 2 MW DC of electric power.

| Apr 11, 2012

Shawmut appoints Tripp as business development director

Tripp joined Shawmut in 1998 and previously held the positions of assistant superintendent, superintendent, and national construction manager.

| Apr 11, 2012

Corgan & SOM awarded contract to design SSA National Support Center

The new SSA campus is expected to meet all Federal energy and water conservation goals while achieving LEED Gold Certification from the United States Green Building Council.

| Apr 11, 2012

C.W. Driver completes Rec Center on CSUN campus

The state-of-the-art fitness center supports university’s goal to encourage student recruitment and retention.

| Apr 10, 2012

JE Dunn completes two medical office buildings at St. Anthony’s Lakewood, Colo. campus

Designed by Davis Partnership Architects, P.C., Medical Plaza 1 and 2 are four-story structures totaling 96,804-sf and 101,581-sf respectively.

| Apr 10, 2012

THINK [about architecture] Scholarship enters 15th year

Students are invited to submit two-minute creative videos that illustrate how they interact with their school's design and what the space makes possible.

| Apr 10, 2012

Structured Development & Bucksbaum close on new retail site in Chicago

The site is the location of New City, a mixed-use development that will feature 370,000-sf of retail space and 280 residential rental units.

| Apr 10, 2012

Moriarty & Associates selected as GC for Miami’s BrickellHouse Condo

Construction of the 46-story development is schedule to get underway this summer and be completed in 2014.

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021