flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

The key to building in space may just be… urine?

Building Materials

The key to building in space may just be… urine?

A new building method to potentially make space architecture possible enters the fray.


By David Malone, Associate editor | April 8, 2020
Moon base with astronaut

Image: ESA, Foster and Partners

When it comes to building architecture in space, researchers, scientists, and architects have been offering up possible solutions for years. Concrete made from soil, ice shelters, and those grown from fungus have all been offered up as possible building materials. But a new possible building method may just use the most unique component of them all: urine.

Norwegian, Spanish, Italian, and Dutch scientists, together with the Advanced Concepts Team (ACT) of the European Space Agency (ESA), have conducted experiments using urea from urine as a superplasticizer for lunar geopolymer mixtures that can then be used to 3D print structures. The scientists presented their findings in the Journal of Cleaner Production.

In their paper titled "Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixters," the scientists say urea can break hydrogen bonds and therefore reduces the viscosities of many aqueous mixtures. And since urea is the second most abundant component of urine (water being the first), it would be readily available, even in a location as barren and distant as the moon.

 

See Also: Designing for the final frontier: Space architecture

 

"Addition of urea has been compared with polycarboxylate and naphthalene based superplasticizers, and with a control mixture without superplasticizer. When curing the sample containing urea at 80 °C, the initial setting time became longer. The samples containing urea or naphthalene-based superplasticizers could bear heavy weights shortly after mixing, while keeping an almost stable shape. Samples without superplasticizer or containing the polycarboxylate-based admixture were too stiff for mold-shaped formation after casting. Samples containing urea and naphthalene-based admixtures could be used to build up a structure without any noticeable deformation," according to the paper. 

 

Samples with urea and without urea

 

Additionally, the samples with urea also had higher compressive strength than the other two specimens containing superplasticizers, "and it continued to rise even after 8 freeze-thaw cycles."

The scientists conclude the paper by explaining further studies are needed to assess how the lunar regolith geopolymers will behave under the severe lunar conditions, which include a vacuum that can cause the volatile components to evaporate and large temperature fluctuations that can cause the structure to crack.

But if all goes according to plan, Moon Base Number 1 may have a more literal meaning than anyone ever anticipated.

 

Related Stories

Green | Jun 2, 2016

USGBC offers new LEED pilot credit: Building Material Human Hazard and Exposure Assessment

For assessing human health-related exposure scenarios for construction products.

Building Materials | Jun 1, 2016

MIT study: Microscopic structure of natural materials can inspire better concrete

Bones and sea sponges are highly organized at the molecular level, while concrete consists of random composites.

Codes and Standards | May 20, 2016

Industry leaders call for wider use of bamboo as a building material

Benefits include seismic resiliency and sustainability.  

Building Materials | Apr 8, 2016

AIA: Architects release first white paper on materials transparency and risk

It provides the steps architects should be taking to ensure change, promote openness, and increase collaboration between themselves, their suppliers, and their clients.

Market Data | Feb 26, 2016

JLL upbeat about construction through 2016

Its latest report cautions about ongoing cost increases related to finding skilled laborers.

| Jan 28, 2016

AIA CES class: The rainscreen approach to a better building envelope

Building envelope expert Bradley Carmichael of Hoffmann Architects explains how rainscreen wall systems work and evaluates the effectiveness of various rain-control methods, including mass walls, perfect barriers, and masonry veneers. This AIA/CES class is worth 1.0 learning unit.

Building Materials | Jan 25, 2016

Johnson Controls to merge with Tyco International

The $20 billion deal is the latest corporate inversion maneuver.

Concrete | Jan 15, 2016

Fallingwater to Sydney Opera House: Ranking the world’s best concrete buildings

Large and small, some of the most iconic structures of all time were made of the composite building material.

boombox1 - default
boombox2 -
native1 -

More In Category


Codes and Standards

Updated document details methods of testing fenestration for exterior walls

The Fenestration and Glazing Industry Alliance (FGIA) updated a document serving a recommended practice for determining test methodology for laboratory and field testing of exterior wall systems. The document pertains to products covered by an AAMA standard such as curtain walls, storefronts, window walls, and sloped glazing. AAMA 501-24, Methods of Test for Exterior Walls was last updated in 2015. 



halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021