flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Harvard debuts HouseZero as a possible response to making existing buildings more efficient

Energy Efficiency

Harvard debuts HouseZero as a possible response to making existing buildings more efficient

Hundreds of embedded sensors will inform energy use reduction research.


By John Caulfield, Senior Editor | December 5, 2018

HouseZero is designed to test systems whose installation would improve the performance of existing buildings that currently account for two-fifths of America's annual energy usage. Image: Michael Grimm

The Harvard Center for Green Buildings and Cities (CGBC) has completed the retrofitting of its 4,600-sf headquarters in Cambridge, Mass., built in 1924, into a living laboratory called HouseZero, whose design is driven by ambitious performance targets that include nearly zero energy use for heating and cooling, zero electrical lighting during the day, operating with 100% natural ventilation, and producing zero carbon emissions.

Snohetta was this project’s chief architect, and Skanska Teknikk Norway its lead energy engineer.

A prototype, HouseZero has been set up to address a chronic problem within the built environment: inefficient existing structures. The building inventory in the U.S. is estimated to account for 40% of the country’s energy consumption, with 25% of that usage attributed to housing alone. The annual costs of residential energy consumption are enormous: $230 billion for heating, cooling and powering the nation’s 113.6 million households.

CGBC, at the Harvard Graduate School of Design, has embedded hundreds of sensors connected by several miles of wiring within each component of HouseZero, from which it will draw data points that inform its researchers about the building’s behaviors. These data will be the basis of computational simulations for fuel research that could help the Center develop new systems and algorithms that promote energy efficiency, health, and sustainability.

The goal of HouseZero is to create a blueprint for reducing energy demands and increasing cost savings for property owners. “HouseZero challenged us to rethink the conventions of building design and operation to enhance lifelong efficiency and quality of life for occupants,” says Ali Malkawi, founding director of CGBC, and creator and leader of the HouseZero project.

An example of this rethinking is natural ventilation that is controlled by a window actuation system that employs sophisticated software and sensors arrays to automatically open and close windows to maintain a quality internal environment throughout the year. The building itself will strive for best possible comfort. However, Malkawi notes, a window can always be opened manually to ensure individual comfort.

HouseZero’s third floor features a flexible, highly-controlled and monitored experimental space—dubbed the LiveLab—that’s hardwired to the building’s energy exchange system. The space will allow for the testing, swapping, and optimization of new technologies. An immediate goal is to beta test new technologies that can eventually replace the building’s ground source heat pump for peak conditions.

 

HouseZero is naturally ventilated, and designed to use only natural lighting during the daytime hours. Image: Michael Grimm

 

The building will also be used to research how structures connect with and respond to its natural environment. Its envelope and materials were designed to interact with the seasons and the exterior environment. The building, according to CGBC, will adjust itself to reach thermal comfort for its occupants.

HouseZero will achieve zero net energy with the help of a rooftop PV array that provides renewable electrical energy for the heat pump as well as for energy required by user equipment. A battery system is employed for night time use and low-sun conditions.

To meet proposed emission cuts of the Paris agreement, HouseZero will offset the hidden emissions generated throughout the building’s anticipated 60-year life cycle, from the fabrication and transport of building materials and construction processes, to maintenance and decommissioning.

The rest of the renovation team on this project included Columbia Construction (CM), Silman Associates (SE), BR+A (MEP/FP/lighting), Bristol Engineering (CE), WindowMaster (BAS/Controls/Natural Ventilation systems), Brekke & Strand Akustikk (acoustrics), Jensen Hughes (code and accessibility consultant), Haley & Aldrich (geotechnical engineer), Syska Hennessy (vertical transportation), Kalin Associates (specifications), Siemens Building Technologies (security systems), Solect Energy (photovoltaic systems), Reed Hilderbrand (landscape architect), Harvard Planning and Project Management; CSL Consulting (project management), and Harvard Graduate School of Design (operations support).

Related Stories

Energy Efficiency | Aug 17, 2016

Investor Confidence Project aimed at raising trustworthiness on energy efficiency projects

The new initiative screens projects to see if they are investor-ready.

Sponsored | Energy Efficiency | Jul 27, 2016

Metal Roofs Have Solar Advantage

 A large roof can become a resource that saves significant money on energy consumption and helps reduce emissions of CO2 and it turns out metal roofs make excellent hosts for solar panels.

Sponsored | Energy Efficiency | Jul 8, 2016

Solar carports power Major League Soccer stadium in Utah

Wanting to capitalize on the abundant energy produced by the sun, the Real Salt Lake professional soccer club built carports in the parking lot using MBCI metal roofing with solar panels. The panels generate 73% of the stadium’s total power needs.

Energy Efficiency | Jun 13, 2016

The nation’s largest net zero-plus commercial building retrofit opens in L.A.

The goal of the Net Zero Plus Electrical Training Institute is for this structure to become a model for emergency operations centers for communities. 

Sustainability | Jun 8, 2016

New program certifies the performance of existing buildings in the U.S.

BREEAM USA, an offshoot of a program already in place in Europe, aims to ease the point of entry.  

Sponsored | Energy Efficiency | May 16, 2016

Metal wall panels’ deep shadow lines break up massing of Georgia school

Marist School, a private Roman Catholic college preparatory school, creates a highly-sustainable structure on its campus.

Green | May 16, 2016

Development team picked for largest Passive House project in North America

The 24-story curved building would be 70% more efficient than comparable housing in New York City.

Green | Apr 27, 2016

Top 10 green building projects for 2016

The Exploratorium at Pier 15 in San Francisco and the West Branch of the Berkeley Public Library are two of the projects recognized by AIA COTE as the top green buildings of 2016.

Sports and Recreational Facilities | Apr 17, 2016

An expanded and renovated complex brings together U. of Colorado’s sports programs

This two-year project enhances the experiences of athletes and fans alike.

Building Technology | Apr 11, 2016

A nascent commercial wireless sensor market is poised to ascend in the next decade

Europe and Asia will propel that growth, according to a new report from Navigant.

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021