flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

5 Tips on Building with SIPs

5 Tips on Building with SIPs

Structural insulated panels are gaining the attention of Building Teams interested in achieving high-performance building envelopes in commercial, industrial, and institutional projects.


December 17, 2010
This article first appeared in the December 2010 issue of BD+C.

Typically composed of a layer of EPS, XPS, or polyurethane foam sandwiched between oriented strand board panels, structural insulated panels can provide R-values for walls, floors, and roofs ranging from 14 to 58, depending on the panel thickness and composition. SIPs also are manufactured to spec, which can result in reduced waste and potential labor savings.

First-time users may find working with SIPs somewhat worrisome, so we asked Frank Kiesecker, of SIP manufacturer ACH Foam Technologies, Denver, to provide some prescriptive advice that even experienced SIP users could benefit from.

1. Pre-plan electrical and equipment needs. Since SIPs are manufactured to meet the project’s specifications, it’s important to plan for electrical chases in advance to prevent time-consuming and sometimes costly modifications during installation. For example, SIP facings should never be cut horizontally for the installation of electrical wiring; doing so will compromise structural performance.

In addition, during the design phase, it’s important to determine whether there are any equipment needs for the installation of the panels. If the project specifies roof panels or wall or floor panels larger than 8x8 feet, a forklift or crane may be required for installation.

2. Organize the panels for installation. Proper storage, weather protection, and handling will make the installation process more efficient. Store the panels on a level space, no closer than three inches to the ground. Organize the panels by the sequence in which they will be installed (i.e., separate the first-floor panels from the second-floor ones), and make sure they’re covered with a breathable protective tarp to keep them dry.

3. Install the panels properly and seal them tight. SIPs need to be fully supported during installation. The panels slip over a wall plate, which needs to be set half an inch from the building edge to ensure that the panels are fully supported. Also, make sure to set the panels in place in the correct order: start in the corners or valleys and work outward. Once installed, all panel joints and voids must be properly sealed using adhesive or SIP tape to minimize air leakage and maintain the structure’s long-term durability.

4. Protect SIPs from water penetration. Once SIPs have been installed and sealed, weather protection such as housewrap is required to prevent moisture deterioration. Follow the housewrap manufacturer’s installation guidelines, and make sure to flash all penetrations. Over time, windows will leak some water at the sill. Use flashing under and around the units to direct water away from the wall structure.

5. Right-size your HVAC system. One common mistake, says Kiesecker, is underestimating the high insulating and air-sealing properties of SIPs when selecting an HVAC system. SIPs allow for smaller HVAC equipment. When working with an HVAC contractor, make sure they take into account an estimate for lower levels of air infiltration. Proper HVAC sizing is critical because an underused system will fail to reach a steady operating rate, resulting in short cycling, which is less energy efficient and requires more maintenance.

Other important factors to consider when determining HVAC sizing:

  • Size of the structure (each floor should be analyzed individually)
  • Orientation of building
  • Type of wall construction, and associated R-value
  • Window and door specs, including the number of windows and doors and their location, insulation value, and fenestration rating
  • Duct location (i.e., in heated space, unheated space, attic, crawl space, etc.)
  • Amount of air infiltration.

SIPs Do’s and Don’ts

  • Do provide adequate support for SIPs when storing them. SIPs should be stored flat and covered.
  • Do study installation drawings before setting panels.
  • Do remove debris from the plate area prior to panel placement.
  • Do provide level and square foundations or floors that support SIP walls.
  • Do provide adequate bracing of panels during erection.
  • Do hold the sill plate back from edge of floor system a half-inch to allow full bearing of SIP OSB facings.
  • Do provide 1½-inch-diameter access holes in plating to align with electrical wire chases in SIPs.
  • Do store sealant and SIP tape in a warm area for best application results in cold weather.
  • Do follow the manufacturer’s recommended joint sealing techniques.
  • Do place sealant along the leading edge of wood being inset into the panel.
  • Do use sealant on wood-to-wood, wood-to-EPS, and EPS-to-EPS connections.
  • Do use SIP tape or equivalent vapor retarder on roof panel joints.
  • Do install proper flashing and sealants around all rough openings and penetrations, as required.
  • Do use only continuous 2Xs, I-beams, and insulated I-beams for spline connections.
  • Do use proper underlayments for roofing and siding. SIP walls are airtight without housewrap, but they do need a drainage plane material.
  • Do install plumbing in interior walls. Furr out interior sections for pipes if necessary.
  • Do provide adequate ventilation to maintain indoor air quality.
  • Do use termite- and mold-resistant materials when required.
  • Don’t leave panels exposed to the elements for long periods of time.
  • Don’t lift SIPs by the top OSB facing or drop SIPs on corners.
  • Don’t install SIPs directly on concrete.
  • Don’t cut wall panel skins horizontally for installation of electrical wiring or overcut the OSB facings for field-cut openings. Use factory-provided chases in SIP core.
  • Don’t be afraid to field trim panels for an exact fit.
  • Don’t install recessed lighting inside the panels.
  • Don’t put plumbing in SIPs.

Related Stories

| Aug 19, 2011

How and why AEC professionals choose flooring systems

Design and construction professionals who completed our flooring survey had strong opinions about their preferred flooring type. 

| Aug 19, 2011

Underfloor air distribution, how to get the details right

Our experts provide solid advice on the correct way to design and construct underfloor air distribution systems, to yield significant energy savings.

| Aug 19, 2011

Enhanced acoustical design

Ambient noise levels in some facility types are trending up and becoming a barrier to clear communication between building occupants.

| Jul 22, 2011

The Right Platform for IPD

Workstations for successful integrated project delivery, a white paper by Dell and BD+C.

| Jul 22, 2011

High-performance windows and doors

Learning objectives After reading this article, you should be able to: Understand issues of thermal performance and energy efficiency in relation to window and door systems; describe optimal detailing of the window-wall interface and how it contributes to building performance, sustainability, and occupant well-being; understand how durability contributes to sustainable windows/doors; and list sustainable O&M requirements for window and door systems.

| Jul 21, 2011

Falling Architecture Billings Index reflects decrease in design demands

This months Architecture Billings Index (ABI), provided by the American Institute of Architects, is almost a full point lower than last month’s reported score. June’s reading of 47.2 was short of the required 50 to achieve billings increases, making July’s reading of 46.3 an unwelcome sign of market tidings.

| Jun 29, 2011

New leadership role for architects in net-zero design

BD+C Editorial Director Rob Cassidy talks with RNL Design's Tom Hootman, AIA, about the changing role of architects in net-zero designs.

boombox1 - default
boombox2 -
native1 -

More In Category


AEC Tech

Lack of organizational readiness is biggest hurdle to artificial intelligence adoption

Managers of companies in the industrial sector, including construction, have bought the hype of artificial intelligence (AI) as a transformative technology, but their organizations are not ready to realize its promise, according to research from IFS, a global cloud enterprise software company. An IFS survey of 1,700 senior decision-makers found that 84% of executives anticipate massive organizational benefits from AI. 


Codes and Standards

Updated document details methods of testing fenestration for exterior walls

The Fenestration and Glazing Industry Alliance (FGIA) updated a document serving a recommended practice for determining test methodology for laboratory and field testing of exterior wall systems. The document pertains to products covered by an AAMA standard such as curtain walls, storefronts, window walls, and sloped glazing. AAMA 501-24, Methods of Test for Exterior Walls was last updated in 2015. 


MFPRO+ News

World’s largest 3D printer could create entire neighborhoods

The University of Maine recently unveiled the world’s largest 3D printer said to be able to create entire neighborhoods. The machine is four times larger than a preceding model that was first tested in 2019. The older model was used to create a 600 sf single-family home made of recyclable wood fiber and bio-resin materials.

halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021