flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Harvard’s District Energy Facility showcases a new infrastructure typology

University Buildings

Harvard’s District Energy Facility showcases a new infrastructure typology

The building is currently under construction.


By David Malone, Associate Editor | March 14, 2018
The DEF at night

Rendering courtesy of Leers Weinzapfel Associates

The 58,000-sf Harvard University Allston Campus District Energy Facility (DEF) will provide electricity, hot water, and chilled water to the Allston campus. The building represents a new infrastructure typology dubbed the cogeneration plant.

Designed by Leers Weinzapfel Associates, the DEF uses a compact cubic form with rounded corners that allows for maximum flexibility of future development and is a visible demonstration of cost-effective sustainability in building. The facility is wrapped in metal fins that form a screen around it, with “petal-like” elements set at varying degrees of openness to reveal or conceal the various equipment areas within.

 

Harvard's DEF as seen from across the riverRendering courtesy of Leers Weinzapfel Associates.

 

The fins are most open at the building’s corner entry and round the thermal energy storage tank. They are most closed on the service sides. The fins are raised above the ground on the public face of the building to reveal the main equipment hall to passersby.

The DEF’s transparent interior allows it to be used as a teaching tool for the university’s new science and engineering campus. People can observe the cogeneration plant’s complicated system of chillers, boilers, piping, pumps and flues, and electrical tools.

 

Rendering of Harvard's DEFRendering courtesy of Leers Weinzapfel Associates.

 

RMF Engineering designed the DEF’s equipment systems, which are efficient, resilient, and adaptable to the campus’s future needs. A chilled water reserve tank provides thermal energy to support efficient equipment use and equipment elevated above flood levels supports resiliency for continuous independent operation of the facility, even in the event of electrical grid failure. 

The project is slated for completion in 2019.

 

Rendering courtesy of Leers Weinzapfel Associates.

Tags

Related Stories

Sustainability | Feb 8, 2023

A wind energy system—without the blades—can be placed on commercial building rooftops

Aeromine Technologies’ bladeless system captures and amplifies a building’s airflow like airfoils on a race car.

Green | Dec 9, 2022

Reaching carbon neutrality in building portfolios ranks high for organizations

Reaching carbon neutrality with their building portfolios ranks high in importance among sustainability goals for organizations responding to a Honeywell/Reuters survey of senior executives at 187 large, multinational corporations. Nearly nine in 10 respondents (87%) say that achieving carbon neutrality in their building portfolio is either extremely (58%) or somewhat (29%) important in relation to their overall ESG goals. Only 4% of respondents called it unimportant.

Green | Dec 9, 2022

Newly formed Net Zero Built Environment Council aims to decarbonize the built world

Global management consulting firm McKinsey recently launched the Net Zero Built Environment Council, a cross-sector coalition of industry stakeholders aiming to decarbonize the built world. The council’s chief goal is to collaboratively create new pathways to cut greenhouse gas emissions from buildings.

Energy Efficiency | Dec 6, 2022

Washington state’s Building Code Council mandates heat pumps in all new residential construction

The Washington State Building Code Council has voted to require heat pumps for all new residential construction starting in July 2023. The new mandate has drawn criticism over concerns that it will add costs to housing construction, especially given current supply chain challenges for heat pumps.

Legislation | Nov 23, 2022

7 ways the Inflation Reduction Act will impact the building sector

HOK’s Anica Landreneau and Stephanie Miller and Smart Surfaces Coalition’s Greg Kats reveal multiple ways the IRA will benefit the built environment. 

Energy-Efficient Design | Nov 14, 2022

How to achieve net zero energy in five steps

Martine Dion and Ethan Seaman share net zero energy best practices with owners and developers.

Green | Nov 13, 2022

NREL report: Using photovoltaic modules with longer lifetimes is a better option than recycling

A new report from the U.S. National Renewable Energy Laboratory (NREL) says PV module lifetime extensions should be prioritized over closed-loop recycling to reduce demand for new materials.

| Aug 23, 2022

New Mass. climate and energy law allows local bans on fossil fuel-powered appliances

A sweeping Massachusetts climate and energy bill recently signed into law by Republican governor Charlie Baker allows local bans on fossil fuel-powered appliances.

| Aug 8, 2022

Mass timber and net zero design for higher education and lab buildings

When sourced from sustainably managed forests, the use of wood as a replacement for concrete and steel on larger scale construction projects has myriad economic and environmental benefits that have been thoroughly outlined in everything from academic journals to the pages of Newsweek.

Sponsored | | Aug 4, 2022

Brighter vistas: Next-gen tools drive sustainability toward net zero line

New technologies, innovations, and tools are opening doors for building teams interested in better and more socially responsible design. 

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021