flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Seizing the Daylight with BIPV Glass

Sponsored Content Glass and Glazing

Seizing the Daylight with BIPV Glass

Glass has always been an idea generator. Now, it’s also a clean energy generator.


By Vitro Architectural Glass | October 1, 2021
BIPV glass modules can be used with virtually any glass substrate or low-e coating to achieve desired aesthetics. Photo courtesy of Vitro Architectural Glass
BIPV glass modules can be used with virtually any glass substrate or low-e coating to achieve desired aesthetics. Photo courtesy of Vitro Architectural Glass

Around the world, major government and social initiatives are driving demand for sustainable building design and CO2-free energy. In recent years, as the volume of solar cells being manufactured and installed in buildings has increased, the cost has lowered significantly. 

The United States government has supported this effort through the Solar Investment Tax Credit (ITC). Since the program was implemented in 2006, the residential and commercial solar ITC has helped spark 10,000% growth in the U.S. solar industry, with an average annual growth of 50% over the last decade alone. The ITC currently offers a 26% tax credit for solar systems on commercial properties and can be applied to customer-sited commercial solar systems. The ITC credit can apply to aggregate investment in both energy-generating glass panels and electrical components.  

Like sustainability, design expectations for commercial buildings are also at an all-time high. In glass specifications, today’s buildings can demand any combination of solar control performance, ultimate transparency, tinted aesthetics and colorful treatments. 

Manufacturers like Vitro Architectural Glass have responded with building-integrated photovoltaic (BIPV) glass products like Solarvolt™ BIPV.

Where to Use BIPV Modules

Building-integrated photovoltaic (BIPV) glass modules have emerged as a solution to satisfy these challenges — CO2-free energy generation and design utility — while simultaneously replacing conventional building envelope materials, such as wall cladding or roofing. In fact, BIPV glass can be used to enhance virtually any exterior element: balustrades and balconies, skylights, roof elements, carports and more. 

BIPV glass modules can be integrated into most standard glass framing and building envelope systems. Photo courtesy of Vitro Architectural Glass
BIPV glass modules can be integrated into most standard glass framing and building envelope systems. Photo courtesy of Vitro Architectural Glass

Most notably, BIPV glass modules like Solarvolt™ BIPV can perform the functions of classic glass façades, vision glazing and spandrel glass. In these applications, the solar module replaces conventional building panels and functions as external weather protection for the façade. Tailor-made solar modules comply with all design requirements for glass façades and can be installed with most conventional glass framing systems. For structural glazing, modules utilizing tempered glass with inter-window strips can be integrated into building envelopes and roof surfaces adjacent to heated rooms.

BIPV also can be used for sunshading elements, not only capturing sunlight to generate energy, but also protecting against the sun and glare. BIPV overhead glazing, canopy structures and skylights can harness “solar painting,” a term often used to refer to the interplay of light and shadow resulting from the spacing between individual solar cells. In addition to generating power, BIPV glass balustrades and balconies can highlight the architectural character of buildings and their surroundings while meeting requirements for safety or accident-proof glazing at the same time. 

New Design Possibilities

A BIPV module typically consists of solar cells laminated between two glass lites — these can be comprised of virtually any glass product and with any high-performance low-emissivity (low-e) coating to provide yet another measure of environmental performance. 

This means BIPV can meet a range of design goals. Designers can realize dynamic, colorful concepts with backpainted BIPV spandrel glass. Blue, green, gray and bronze tinted glasses can also help realize vibrant designs. For ultimate transparency and maximum solar cell performance, low-iron glasses with high visible light transmittance (VLT) also can be used. In fact, Solarvolt™ BIPV modules are compatible with every Vitro Glass product and substrate, including its historic Solarban® family of low-e coatings and Starphire Ultra-Clear® glass. 

Solar cells are often used for “solar painting,” leveraging light and shadow. Photo courtesy of Vitro Architectural Glass
Solar cells are often used for “solar painting,” leveraging light and shadow. Photo courtesy of Vitro Architectural Glass

The BIPV panels’ solar cells themselves can be arranged in rows, alternating patterns and other configurations. Multiple photovoltaic (PV) crystalline silicone technologies also can impact the appearance of the solar cells and their power generation performance. While monocrystalline PV renders a black appearance on solar cells with maximum energy-generation performance, polycrystalline PV delivers a striking blue appearance with slightly reduced performance. For a patterned appearance and higher visible light transmission while retaining some of the energy generation benefits of monocrystalline PV, monocrystalline PV strips are also available.

For decades, glass has been seen as one of the world’s most versatile, beautiful and sustainable building materials. Now, glass is more than just an idea generator — it’s a power generator. Today, glass can collect clean energy, compounding the product’s powerful benefits. 

To learn more about Solarvolt™ BIPV glass modules, visit www.vitrosolarvolt.com.

Related Stories

| May 3, 2013

Another edible city? Artist creates model city with chewing gum

French artist Jeremy Laffon pieced together a model city with thousands of sticks of mint-green chewing gum.

| Apr 26, 2013

BASF Corporation joins WDMA

The Window and Door Manufacturers Association (WDMA) announced today that the BASF Corporation is the newest member of the association.

| Apr 23, 2013

Building material innovation: Concrete cloth simplifies difficult pours

Milliken recently debuted a flexible fabric that allows for concrete installations on slopes, in water, and in other hard to reach places—without the need for molds or mixing.

| Apr 16, 2013

5 projects that profited from insulated metal panels

From an orchid-shaped visitor center to California’s largest public works project, each of these projects benefited from IMP technology.

| Mar 29, 2013

GAF offers commercial property owners up to $500 off first service visit

GAF, North America’s largest roofing manufacturer, knows that regular maintenance is critical for maximizing the life expectancy of every commercial roof. The recently enhanced WellRoof® Plus Program makes it easy and rewarding for commercial property owners to establish a roof maintenance program with a GAF Certified Maintenance Professional (CMP), who can exclusively offer this program.

| Mar 29, 2013

Stanford researchers develop nanophotonic panel that reflects sun's heat out of the atmosphere

Researchers at Stanford University have developed a nanophotonic material that not only reflects sunlight, but actually beams the thermal energy out of the earth's atmosphere.

boombox1 - default
boombox2 -
native1 -

More In Category


Codes and Standards

Updated document details methods of testing fenestration for exterior walls

The Fenestration and Glazing Industry Alliance (FGIA) updated a document serving a recommended practice for determining test methodology for laboratory and field testing of exterior wall systems. The document pertains to products covered by an AAMA standard such as curtain walls, storefronts, window walls, and sloped glazing. AAMA 501-24, Methods of Test for Exterior Walls was last updated in 2015. 



halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021