flexiblefullpage -
billboard - default
interstitial1 - interstitial
Currently Reading

Stanford develops a robot that grows like a vine and carries with it inestimable applications

Building Technology

Stanford develops a robot that grows like a vine and carries with it inestimable applications

For construction, the robot could be used for wiring the ceilings or floors of a building.


By David Malone, Associate Editor | July 28, 2017
Stanford's snaking robot bending around and between two pieces of wood

Courtesy of Stanford

Like a game Snake come to life, a new robot being developed at Stanford grows like a vine and has the ability to weave through tight spaces to provide applications from disaster relief to simplifying construction projects.

The main idea behind the robot is uncomplicated; the “snake” is a tube of soft thin plastic that is folded inside itself. As the material is forced out, either pneumatically or hydraulically, the robot grows longer. According to Stanford, the robot’s design is so useful because the tip moves and results in growth while the body remains stationary, making it incredibly difficult for the robot to become stuck.

“The body can be stuck to the environment or jammed between rocks, but that doesn’t stop the robot because the tip can continue to progress as new material is added to the end,” says Elliot Hawkes, a visiting Assistant Professor from the University of California, Santa Barbara in a Stanford article on the robot.

 

 

As the robot grows, it can pull cables along, which means it could be used in the construction industry to help wire new and renovated buildings by traveling in the walls, floors, or ceilings. The robot can make turns via a control system that differentially inflates the body and a software system bases direction decisions on images received from a camera at the tip, so pipes or other obstacles already located in the wall, ceiling, or floor space become non-issues.

Other applications include scaling the robot up for search and rescue operations, growing vertically to act as an antenna, or being used to deliver materials, such as water, to hard to reach places.

The robot is detailed in a Science Robotics paper published on June 19.

Related Stories

Mass Timber | Aug 30, 2022

Mass timber construction in 2022: From fringe to mainstream

Two Timberlab executives discuss the market for mass timber construction and their company's marketing and manufacturing strategies. Sam Dicke, Business Development Manager, and Erica Spiritos, Director of Preconstruction, Timberlab, speak with BD+C's John Caulfield. 

Green | Jul 26, 2022

Climate tech startup BlocPower looks to electrify, decarbonize the nation's buildings

The New York-based climate technology company electrifies and decarbonizes buildings—more than 1,200 of them so far.

Building Technology | Jun 9, 2022

GSA Green Proving Ground program selects six innovative building technologies for evaluation

The U.S. General Services Administration’s (GSA) Green Proving Ground program, in collaboration with the U.S. Department of Energy, has selected six innovative building technologies for evaluation in GSA’s inventory.

Smart Buildings | Jun 1, 2022

Taking full advantage of smart building technology

Drew Deatherage of Crux Solutions discusses where owners and AEC firms could do better at optimizing smart technology in building design and operations.

Sponsored | BD+C University Course | May 10, 2022

Design guide for parapets: Safety, continuity, and the building code

This course covers design considerations for parapets. The modern parapet must provide fire protection, serve as a fall-protective guard, transition and protect the roof/facade interface, conceal rooftop equipment, and contribute to the aesthetic character of the building. 

Sponsored | BD+C University Course | May 10, 2022

Designing smarter places of learning

This course explains the how structural steel building systems are suited to construction of education facilities.

Sponsored | BD+C University Course | May 2, 2022

12 factors to consider in evaluating tankless water heaters for multifamily housing projects

The pace of tankless water heater adoption in the overall residential market could portend greater acceptance in the broader multifamily market. Despite these positive signs, many developers hold fast to the notion that tankless units can’t produce enough hot water to meet the needs of hundreds of apartment or condo dwellers. Here are 12 factors to consider in evaluating tankless water heaters for your next multifamily housing project.

Concrete Technology | Apr 19, 2022

SGH’s Applied Science & Research Center achieves ISO 17025 accreditation for concrete testing procedures

Simpson Gumpertz & Heger’s (SGH) Applied Science & Research Center recently received ISO/IEC17025 accreditation from the American Association for Laboratory Accreditation (A2LA) for several concrete testing methods.

Sponsored | BD+C University Course | Apr 19, 2022

Multi-story building systems and selection criteria

This course outlines the attributes, functions, benefits, limits, and acoustic qualities of composite deck slabs. It reviews the three primary types of composite systems that represent the full range of long-span composite floor systems and examines the criteria for their selection, design, and engineering.

Wood | Apr 13, 2022

Mass timber: Multifamily’s next big building system

Mass timber construction experts offer advice on how to use prefabricated wood systems to help you reach for the heights with your next apartment or condominium project. 

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021

 



Magazine Subscription
Subscribe

Get our Newsletters

Each day, our editors assemble the latest breaking industry news, hottest trends, and most relevant research, delivered to your inbox.

Subscribe

Follow BD+C: