flexiblefullpage -
billboard - default
interstitial1 - interstitial
Currently Reading

The key to building in space may just be… urine?

billboard - default
interstitial1 - interstitial
Building Materials

The key to building in space may just be… urine?

A new building method to potentially make space architecture possible enters the fray.

By David Malone, Associate editor | April 8, 2020
Moon base with astronaut

Image: ESA, Foster and Partners

When it comes to building architecture in space, researchers, scientists, and architects have been offering up possible solutions for years. Concrete made from soil, ice shelters, and those grown from fungus have all been offered up as possible building materials. But a new possible building method may just use the most unique component of them all: urine.

Norwegian, Spanish, Italian, and Dutch scientists, together with the Advanced Concepts Team (ACT) of the European Space Agency (ESA), have conducted experiments using urea from urine as a superplasticizer for lunar geopolymer mixtures that can then be used to 3D print structures. The scientists presented their findings in the Journal of Cleaner Production.

In their paper titled "Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixters," the scientists say urea can break hydrogen bonds and therefore reduces the viscosities of many aqueous mixtures. And since urea is the second most abundant component of urine (water being the first), it would be readily available, even in a location as barren and distant as the moon.


See Also: Designing for the final frontier: Space architecture


"Addition of urea has been compared with polycarboxylate and naphthalene based superplasticizers, and with a control mixture without superplasticizer. When curing the sample containing urea at 80 °C, the initial setting time became longer. The samples containing urea or naphthalene-based superplasticizers could bear heavy weights shortly after mixing, while keeping an almost stable shape. Samples without superplasticizer or containing the polycarboxylate-based admixture were too stiff for mold-shaped formation after casting. Samples containing urea and naphthalene-based admixtures could be used to build up a structure without any noticeable deformation," according to the paper. 


Samples with urea and without urea


Additionally, the samples with urea also had higher compressive strength than the other two specimens containing superplasticizers, "and it continued to rise even after 8 freeze-thaw cycles."

The scientists conclude the paper by explaining further studies are needed to assess how the lunar regolith geopolymers will behave under the severe lunar conditions, which include a vacuum that can cause the volatile components to evaporate and large temperature fluctuations that can cause the structure to crack.

But if all goes according to plan, Moon Base Number 1 may have a more literal meaning than anyone ever anticipated.


Related Stories

Building Materials | Nov 29, 2021

Daltile expands its Unity Collection of porcelain tiles with a new color

Addition of "Taupe" gives Daltile's Unity Collection three warm and three cool colors.

Urban Planning | Nov 11, 2021

Reimagining the concrete and steel jungle, SOM sees buildings that absorb more carbon than they emit

The firm presented its case for a cleaner built environment during the Climate Change conference in Scotland.

Sustainability | Oct 28, 2021

Reducing embodied carbon in construction, with sustainability leader Sarah King

Sustainability leader Sarah King explains how developers and contractors can use the new EC3 software tool to reduce embodied carbon in their buildings.

Sponsored | Glass and Glazing | Oct 1, 2021

Specifying Responsibly to Save Birds’ Lives

Realizing sustainable, bird-friendly glass design

Sponsored | Glass and Glazing | Oct 1, 2021

Seizing the Daylight with BIPV Glass

Glass has always been an idea generator. Now, it’s also a clean energy generator.

Wood | May 14, 2021

What's next for mass timber design?

An architect who has worked on some of the nation's largest and most significant mass timber construction projects shares his thoughts on the latest design trends and innovations in mass timber.

3D Printing | Nov 27, 2020

The Fibonacci House: A test case of 3D construction printing

The Fibonacci House, which we have named after Leonardo Fibonacci, the medieval Italian mathematician, illustrates the potential of 3DCP and demonstrates how a complex design and challenging logistics can be solved through pragmatic planning and 3DCP technology.

boombox2 -
native1 -

More In Category

halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021


Magazine Subscription

Get our Newsletters

Each day, our editors assemble the latest breaking industry news, hottest trends, and most relevant research, delivered to your inbox.


Follow BD+C: