HorizonTV Featuring BD+C: Watch Episodes On Demand At HorizonTV

The science of learning: Designing the STEM learning facilities of the future

New technology and changing pedagogies are influencing how to best teach a generation of learners who have never known a world without smartphones or tablets, writes HOK's Kimberly Robidoux.

August 16, 2014 |
Life at HOK

As undergraduate science educators adjust to changing science, technology, engineering and mathematics (STEM) curriculum, academic institutions must create new types of learning environments.

New technology and changing pedagogies are influencing how to best teach a generation of learners who have never known a world without smartphones or tablets. Architects and designers must become partners in creating the dynamic science teaching facilities required for undergraduate STEM education. 

By understanding today’s students and envisioning how learning will continue to evolve, we can shape the structures and spaces that support new teaching methods and evolving educational missions.



Several significant trends are impacting the design and function of today’s science classrooms:

  • A generation of students who learn and communicate differently from previous generations.
  • Integrated technology in classrooms, teaching labs and other student spaces.
  • Redesigned course delivery that includes a blend of in-person and online experiences.
  • A recognition of the value of small group work where students learn from and support each other.
  • Intentional learning, in which students become advocates of their own education.
  • A goal to increase retention of students completing their degree in a STEM field.
  • The need to equip students to enter a competitive workforce with broad-based skills, adaptability and critical thinking acquired through a high-quality educational experience.



Technology has empowered students to complete much of their learning – whether it’s watching a video lecture, researching information online or completing reading assignments – before entering the classroom. Commonly known as “flipping the classroom,” this approach allows class time to be spent working on problems in small groups where students can learn from their peers and receive guidance from the instructor.

Variations of this pedagogy include problem-based learning (PBL), team-based learning (TBL) and SCALE-UP (Student-Centered Active Learning Environment with Upside-down Pedagogies), all of which emphasize the importance of spending class time – when the greatest amount of help is available – solving difficult problems and concepts.

In fact, small group learning has been demonstrated to be more effective for retention than a traditional lecture format.



Because today’s science education is hands-on and lab-focused, teaching labs must be flexible enough to accommodate diverse disciplines, shifting priorities and new focus areas.

An emerging trend in STEM undergraduate learning is the incorporation of a true interdisciplinary curriculum when possible. This shift creates an environment where students are working in teams with other disciplines and learning about collaboration as they would in the real world.

The first year or two of a program may provide opportunities for courses to be redefined to integrate several STEM disciplines – including physics, math, chemistry and biology – into the teaching lab environment.

By configuring utilities, gases and other core functions along the perimeter of a lab, the center can be left open to facilitate maximum flexibility of tables, chairs and lab stools. Designing all labs based on the same module enables any space to function as a teaching lab, a research lab or a classroom as needed. This same room can be a teaching lab, a team-based learning classroom, a computer lab, a lecture classroom or a student project work room.  



Relationship-building is one of the greatest benefits of the university experience. These personal interactions are what set the physical university environment apart from online degree programs. While there are several ways to foster a community of learning, an emerging trend is to provide spaces for students to meet outside the classroom to study, work in teams or share a meal.

Known as “learning landscapes,” these open collaboration areas and café spaces provide a place for students to remain on campus beyond class time. These are the “sticky” spaces. Because they create opportunities to learn from each other and build relationships, these spaces can help increase student retention. 

A robust technological environment is a necessity for delivering content and enabling both formal and informal interaction in classrooms and wherever students gather. Access to the internet and the ability to use wireless devices must be provided throughout the building and campus.

In student-focused buildings, the goal is to provide a 1:1 ratio of scheduled seats (classrooms and teaching labs) to unscheduled spaces (open seating and study rooms). This is a major shift from the classroom and lab focused buildings of the past.



STEM education is truly at a crossroads as traditional scientific silos are transformed into multidisciplinary – and even interdisciplinary – fields. But institutions are struggling to modify their curriculum because of governance issues, class scheduling, teaching hours, tenure and other institutional challenges.

We help universities address these change management issues and design innovative spaces, such as “think tanks” for faculty members, to facilitate the cross-pollination of ideas.

As boundaries between the life sciences and physical sciences continue to blur, the need for flexible teaching lab spaces that can accommodate multidisciplinary experiments and demonstrations increases.

It’s also important to designate places for academic partnership with industry to occur. These externally focused spaces enable students to participate in research internships and externships as they gain valuable experience and explore potential career opportunities.



As universities and colleges continue to involve students in research at an early stage in their educational experience, students begin to appreciate the remarkable potential of pursuing a career in science. This hands-on research allows students to effectively function in collaborative environments and be better prepared to enter the workforce. Creating spaces that can incorporate more sophisticated science curriculum will help prepare the next generation of top scientists.


About the Author

Kimberly Robidoux, LEED AP BD+C, is a senior laboratory and education planner with HOK’s Science + Technology practice based in the firm’s Atlanta office. A thought leader in the programming, planning and design of academic science education and research facilities, her career spans more than 20 years and has been focused on facilities for science teaching and research, both in STEM and in the health sciences. She is a frequent conference presenter and adviser to colleges and universities looking to create curriculum-driven, technology-integrated facilities that can adapt to evolving learning methods.

Life at HOK | HOK

HOK is a global design, architecture, engineering and planning firm. Through a network of 24 offices, HOK provides design excellence and innovation to create places that enrich people's lives and help clients succeed. Life at HOK is a group blog authored by the firm’s creative people across the world. Visit hoklife.com.

Related Blogs

HOK employed virtual reality for the modernization and expansion design of the domestic passenger terminal (above) at Hartsfield-Jackson Atlanta International Airport.

September 10, 2018 | Virtual Reality | HOKJames Vandezande

Given the dizzying speed in which the technology has caught on, it’s worth taking a moment to look at what...

John Rhodes, a director of HOK’s Sports + Recreation + Entertainment practice, met with Jamie Roberts (Wales), Tim Visser (Scotland), James Horwill (Australia) and Danny Care (England) to capture their ideas, both as players and fans.

HOK’s John Rhodes met with pro rugby players Jamie Roberts, Tim Visser, James Horwill, and Danny Care to discuss advanced design features and technologies. 


August 18, 2017 | Sports and Recreational Facilities | HOK

HOK invited four world-class rugby players into its London studio to discuss what they would like to see in...

Savings from sustainable design allowed the NOAA to include additional environmental enhancements to its Inouye Regional Center in Honolulu.

May 02, 2017 | Green | HOKAnica Landreneau

What impact does sustainable design have on owners with a finite construction budget or developers who won’...

How to create an 'emotionally intelligent' workplace

A 2012 study by Ipsos found that while 91% of supervisors agreed that emotional intelligence is important, 75% of them were not strong in any of the four key areas of emotional intelligence. Image courtesy HOK

April 21, 2015 | Office Building Design | HOKSofia Fonseca

Emotional intelligence is the leading predictor of performance in the workplace and the strongest driver of...

6 factors steering workplace design at financial services firms

Photo courtesy HOK

February 06, 2015 | Office Building Design | HOK

Grossly underutilized space and a lack of a mobility strategy are among the trends identified by HOK based...

January 06, 2015 | HOK

Technology is transforming the guest experience and enabling designers to reimagine a new hospitality-orien...

Photo: HOK

December 28, 2014 | HOK

Taking a cue from the hospitality industry, airport executives are seeking to make their facilities feel mo...

Photo: HOK

November 17, 2014 | HOK

During the past five years, the worlds of hospitality and corporate real estate have undergone an incredibl...

Walter Reed National Military Medical Center Healing Garden. Rendering: HOK

October 13, 2014 | HOK

I have spent the last several months writing about healthy workplaces. My research lately has focused on st...

Photo: HOK

September 09, 2014 | HOK

As part of our ongoing studies of how building design influences human behavior in today’s social media-dri...

Overlay Init

Your card will be charged: 0