flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

The next steps for a sustainable, decarbonized future


The next steps for a sustainable, decarbonized future

Developers and building owners are striving to reduce fossil fuel use and create more efficient and sustainable facilities. Here’s how to get to the next level.

LPA | March 2, 2023
Taking the next step overview of decarbonization, net-zero energy goals
Taking the next steps: decarbonization, net-zero energy goals. Photo courtesy LPA

For building owners and developers, the push to net zero energy and carbon neutrality is no longer an academic discussion. Government regulators are increasingly requiring that buildings perform more efficiently. Investors are focusing on meeting environmental, social, and governance standards. Tenants are demanding sustainable facilities. At the same time, the American Institute of Architects has declared that global warming is the greatest challenge of our generation, with building operations currently responsible for more than 25% of global carbon emissions.

In recent years, the building industry has made strides forward. We are working with clients to demonstrate the value proposition for high-performance design. Efficient projects don’t have to be dramatically more expensive; the payback on many projects for energy-efficient systems and renewable energy is often years, not decades.

Yet, there’s also an understanding that it’s not good enough. Conservation and smart design strategies will only get buildings so far. The AIA 2030 Commitment target is now an 80% average pEUI reduction from set baselines, an important step toward the ultimate goal of carbon neutrality. The average of the 378 firms reporting data for the AIA 2030 Commitment in 2020 was a 51.3% reduction in pEUI compared to baseline. Clearly, as an industry, we have a long way to go to help clients reach the net zero energy target.

Decarbonization Next Steps

The questions facing the industry: How do we continue to get better? How can we take the next big step forward? How do we get the next 10% and 20% in energy reductions?

A New Approach

Architecture 2030 Global Emissions chart.
Architecture 2030 Global Emissions chart. Photo courtesy LPA

Achieving an industrywide net-zero building portfolio will require more rigor by designers, collaboration by project teams and a moon-shot-like focus on renewable energy.

LPA’s design process is based on the foundation that the old way of approaching projects won’t achieve the goals. On every project, the process starts with an exploration of passive strategies to reduce a structure’s energy use, including orientation, building proportions, façade design, shading and natural ventilation.

High-performance envelope systems, glazing, lighting and HVAC technology can also reduce energy loads. Smart design can improve operating efficiencies and reduce energy use by 50 percent. But there are limits to the effect of passive strategies alone. “To reach the 80% threshold, not to mention the 90% threshold or hit net zero energy, you need to be incorporating renewable energy," says LPA Chief Design Officer Keith Hempel.

While various renewable energy technologies are emerging, photovoltaic (PV) panels are typically the most viable solution at the moment. The economics of PV systems—aided by falling prices, government tax credits, and rising utility energy prices—have improved dramatically in recent years. As government regulators push toward all-electric buildings, PVs will provide inexpensive on-site electricity. Simple payback on PV systems can often be achieved in six to seven years.

Edwards Lifesciences expansion project uses PV panels to shade outdoor collaborative areas on the third floor deck.
The recently completed Edwards Lifesciences expansion project uses PV panels to shade outdoor collaborative areas on the third floor deck. Photo courtesy LPA

Taking that next step will require design teams to work with their clients to set building performance goals and include discussions of renewable energy in the early planning and budgeting process. In general terms, for a building with a moderate energy load—for example, an office or classroom building—a PV array around half the area of the gross square footage of the building is necessary to offset the annual energy use.

In other words, each 100,000 sf of enclosed space requires 50,000 sf of PV to generate enough energy to power a building’s annual energy consumption. But many project factors, including building use, energy efficiency and climate, will impact these calculations.

For many projects, finding space for effective PV use will require innovation and a different approach to basic design, working with clients to cost-effectively integrate systems into designs. Parking structures and shading systems are often ideal to support PV arrays. Consolidating rooftop mechanical systems, or moving them off the roof completely, can free unshaded roof area for PV systems.

New Technologies

Graph from AIA 2030 Commitment
LPA was early signee of the AIA 2030 Commitment and has averaged a predicted energy use reduction of 67% on more than 37 million sf of space since 2013. Photo courtesy LPA

Any attempt to reach net zero energy will require buy-in from the client and the involvement of engineers, contractors, and building operators from the start to find value in the process. The goals won’t be achieved unless they fit the project’s budget.

Part of that analysis includes looking for opportunities to decrease the building’s energy load by reducing the amount of air-conditioned square footage. That translates to activating more outdoor spaces and moving circulation outdoors whenever possible. On several projects, including the expansion of the Edwards Lifesciences campus in Irvine, Calif., outdoor walkways reduced the energy demand and freed up space for other programming.

Technological advances will also help move the needle. Improved batteries will play a key role in allowing storage and flexibility to renewable energy systems, helping projects to operate more cost-effectively, especially during peak demand periods. Although they are expensive and bulky now, batteries will certainly improve, and current projects can plan for flexibility to add storage in the future.

Real Progress

Passive conservation measures and efficient systems can help buildings meet the 2030 Commitment target.
Passive conservation measures and efficient systems can help buildings meet the 2030 Commitment target. Photo courtesy LPA

LPA currently has 21 projects in development targeting net zero energy, ranging from an Early Childhood Education Center for the San Bernardino City Unified School District to supportive housing projects in San Diego. The firm had only completed one net zero energy project by 2016; now there are five in service.

The trend is moving up, as more clients embrace performance goals. “Our clients are becoming more interested and engaged in the challenges,” Hempel says. He believes the firm is on track to meet the 80% pEUI target, proving that a large firm working on a wide variety of projects can achieve the 80% AIA 2030 Commitment threshold.

“I’m optimistic,” Hempel says. “When you look at the number of projects that are targeting net zero, you can see that attitudes are changing. These goals are not aspirational; they are achievable if we work together.”

More from Author

LPA | Mar 28, 2024

Workplace campus design philosophy: People are the new amenity

Nick Arambarri, AIA, LEED AP BD+C, NCARB, Director of Commercial, LPA, underscores the value of providing rich, human-focused environments for the return-to-office workforce.

LPA | Feb 8, 2024

LPA President Dan Heinfeld announced retirement

LPA Design Studios announced the upcoming retirement of longtime president Dan Heinfeld, who led the firm’s growth from a small, commercial development-focused architecture studio into a nation-leading integrated design practice setting new standards for performance and design excellence.

LPA | Dec 20, 2022

Designing an inspiring, net zero early childhood learning center

LPA's design for a new learning center in San Bernardino provides a model for a facility that prepares children for learning and supports the community.

LPA | Aug 22, 2022

Less bad is no longer good enough

As we enter the next phase of our fight against climate change, I am cautiously optimistic about our sustainable future and the design industry’s ability to affect what the American Institute of Architects (AIA) calls the biggest challenge of our generation.

LPA | Aug 9, 2022

Designing healthy learning environments

Studies confirm healthy environments can improve learning outcomes and student success. 

LPA | Jul 6, 2022

The power of contextual housing development

Creating urban villages and vibrant communities starts with a better understanding of place, writes LPA's Matthew Porreca. 

LPA | Mar 21, 2022

Finding the ROI for biophilic design

It takes more than big windows and a few plants to create an effective biophilic design.

LPA | Apr 28, 2021

Did the campus design work?

A post-occupancy evaluation of the eSTEM Academy provides valuable lessons for future campuses.

LPA | Feb 23, 2021

Rising costs push developers to consider modular construction

The mainstreaming of modular construction offers a cost-effective and creative solution to develop new types of urban developments.

LPA | May 20, 2020

From shopping mall to eSports supercenter

An aging shopping mall is reimagined as an eSports-focused mixed-use facility, creating new links between the community and the growing eSports industry.

boombox1 - default
boombox2 -
native1 -

More In Category

halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021