The evolution of codes

Today’s codes define more efficient, effective structures, but the engineering of them has become vastly more complex.

Sponsored content
December 01, 2016 |
Bryan Arlington

A half-century ago, building codes were simpler. 

It was an era when most engineers still performed their calculations by hand – literally, using a slide rule. Building materials were looked on as essentially inexhaustible resources, and nobody was worried about the carbon footprint of producing and shipping the materials. So it made sense to err on the side of caution: calculate the maximum loads and build everything to that strength. For example, the snow load capacity of a roof was calculated for the entire roof as a single condition, and every part of the roof had to be capable of supporting the maximum load. This insured that the parts of the roof where the most snow accumulated were able to handle the load. However, the parts on which the least snow accumulated had the same high-load capacity, and those areas might be significantly overbuilt.

Loading conditions that were very broadly defined limited the number of combinations that needed to be calculated. Human-powered engineering that involved calculations done on slide rules was still feasible and affordable. 

But over time, codes have evolved to be more specific and nuanced. More detailed analysis of the way structures work has led to subdividing the broad conditions of older codes into narrower and more specific categories. Going back to the snow load example, the International Building Code (IBC) introduced the idea of unbalanced snow loads in 2000, taking into account the fact that wind causes snow to pile up more on one side of a roof than the other. In 2003 and 2006, those provisions were refined even further.

The result is that today’s codes define more efficient, effective structures, but the engineering of them has become vastly more complex. Where there once might have been six combinations of conditions, there are now hundreds. 

If engineers had to do all those calculations by hand, the construction industry could grind to a halt. Fortunately, as codes evolved, machined-based computational power – computers – also evolved. 

Computer-assisted engineering dates back to the 1960’s, when computers were very large and very expensive, yet relatively primitive in their abilities. All instructions and data came from paper punch cards, involving big decks of hundreds of cards punched on hand-operated, typewriter-like machines that were fed into the computer in a big stack. Each computer might be a series of machines nearly six feet tall, lining most of the walls of a room the size of half a tennis court, yet only have the computing power of today’s cheap digital watches.  Nonetheless, it was still much faster than calculating by hand. 

Star Buildings recognized the value of this resource very early on, and became a leader in computer-assisted engineering.

Today’s computers are far more powerful and fast; capable of engineering tasks that simply would not have been possible before.

As a result of this parallel evolution of codes and computerized engineering, metal buildings and all building in general are being built with much more efficient use of materials, maintaining and even exceeding the safety of the structures of previous decades.

For more on the safety and longevity of metal building systems, download the whitepaper here.

Bryan Arlington | Metal Building Trends
Star Building Systems
Director of Estimating

Bryan Arlington, PE, started at Star in 1996 as a Design Engineer. In 1999, he moved to the Estimating Department as a Sales Engineer. After achieving Senior Sales Engineer, he was promoted to Chief Sales Engineer and then Manager of Estimating. Bryan has a degree in Civil Engineering from the University of Oklahoma and is a registered professional engineer in multiple states. When not at work he enjoys spending time with his wife, Shalmarie and his two children, Jessica and Jacob. For more, visit: http://blog.starbuildings.com.

Related Blogs

June 20, 2017 | Building Team | Metal Building Trends

Getting a project through plan review can be an unusually long process, anywhere from six months to two yea...

May 22, 2017 | Metals | Metal Building Trends

In many metal building applications, straight columns may have more steel than they need.

May 08, 2017 | Building Team | Metal Building Trends

The most important factor in making sure the where, when, what, and how go smoothly is making sure you pick...

May 03, 2017 | Metals | Metal Building Trends

There are robust, well-proven ways to protect steel so it can perform up to its potential virtually indefin...

January 31, 2017 | Metal Building Trends

GF Construction, led by Charles and Jerry Fombrun, designed an industrial manufacturing development in Hait...

December 13, 2016 | Moisture Control/Building Envelope | Metal Building Trends

The basic idea of a rainscreen is to have an exterior surface – a cladding layer - that breaks the force of...

November 21, 2016 | Metals | Metal Building Trends

There is a mistaken belief among some people that steel buildings do not do well in earthquakes. The truth...

October 25, 2016 | Drones | Metal Building Trends

People in the construction business are finding all sorts of great applications for drones, including the i...

Overlay Init