flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

3 ways computational tools empower better decision-making

BIM and Information Technology

3 ways computational tools empower better decision-making

Computational design tools allow planners and designers to translate reams of data into actionable insights for clients.


By Megha Sinha, Melissa Alexander, Nate Holland | NBBJ | May 8, 2023
3d rendering layout of a modern city with a bird's-eye view
Computational design tools give key stakeholders, like the community, more transparency into the design process and greater opportunities for collaboration and co-design. Photo courtesy Adobe Stock

Computational tools—which harness the power of computation to streamline decision making—were once considered “nice to have.” Now they are integral to the design process. So why should clients care?

The reason is simple. Computation gives planners and designers the ability to quickly translate thousands or even millions of data sets into actionable insights. Not only does this lead to better engagement with clients and the community, it also creates more successful projects.

While important to all aspects of design, it is especially relevant to planning neighborhoods, districts and cities. Here, we explore three main opportunities—and corresponding real-world examples—for the use of computational tools in urban planning projects.

1. Simplify the Design Process to Create More Tailored Outcomes

Computational tools can simplify the planning and design process by allowing project teams to organize and analyze mountains of data sets into leverageable insights.

Example: At Louisiana State University (LSU) in Baton Rouge, planners were tasked with developing a comprehensive long-term master plan grounded in data. Using computational tools, the project team was able to translate over a terabyte of data related to land use, ground water information, topography, trees, and use and conditions data about each building and room on campus into models.

LSU Campus Master Plan 3D GIS-based model
For the LSU Campus Master Plan, linking robust data sets related to all campus systems, landscape, building size, function, age and architecture through a custom-built interactive 3D GIS-based model quickly and accurately showed how planning decisions affect physical space. Photo courtesy NBBJ

These models quickly showed how planning decisions would affect physical space and identify use patterns and opportunities. Further, the insights helped the university decide which facilities could be renovated or replaced, pinpoint the best areas for new investments, identify the most strategic targets for limited capital funding, and budget for the most impactful interventions on their historic land-grant campus.

2. Deepen Community Engagement, Co-Design, and Input

Computational tools can make the planning process—and outputs—empathetic by giving communities more transparency into the design process, and more opportunities to provide feedback and build consensus with other stakeholders.

Example: On the LSU project, a 24-7 data exchange portal allowed planners to get input from students and staff on how they travel throughout the campus, including their typical paths and modes of travel, and note how they feel while moving across campus. On another project, the Wilburton Commercial Area plan, an upzoning planning study in Bellevue, Wash., citizens advisory committee members were able to mark up a 2D map of the area with crayons which became automatic inputs for 3D tools, generating different city forms based on the land use ideas.

2D map of the proposed Wilburton Commercial Area plan
Computational tools allowed citizens advisory committee members to mark up a 2D map of the proposed Wilburton Commercial Area plan as an interactive input for a custom data rich 3D modeling platform. Photo courtesy NBBJ

This rapid visualization enabled quick iteration to build consensus around numerous differing inputs and collectively determine next steps.

3. Computational Tools Empower Clients to Make More Informed Decisions

Computational tools make the design process more collaborative by providing clients with the tools to make objective and informed decisions.

Example: The Oak Ridge National Laboratory in Knoxville, Tenn.—the largest US Department of Energy science and energy laboratory—needed to develop an interactive 3D GIS-based decision-making tool to guide its multi-year planning and budgeting process for facilities and supporting infrastructure on the 300-acre Experimental Gas-Cooled Reactor (EGCR) campus.

Oak Ridge National Laboratory planning tool
In many cases, planning tools like this one created for Oak Ridge National Laboratory are becoming final deliverables for clients, allowing users to easily test and compare development options within their own organizations. Photo courtesy NBBJ

In response, the planning team created a tool with an easy-to-use interface that allows a user to easily manipulate physical campus planning scenarios and test and compare development options for feasibility and cost implications. The tool is now being used by the client team to test out potential sites on their campus to locate development projects as the need arises.

 

One important thread that weaves through the examples above is the growing interdependence between designers and planners, and the tools they use. The artful interweaving of data and information with empathy and intuition can improve our urban environments and create lasting results for clients and the community.

More from Author

NBBJ | Oct 18, 2023

6 ways to integrate nature into the workplace

Integrating nature into the workplace is critical to the well-being of employees, teams and organizations. Yet despite its many benefits, incorporating nature in the built environment remains a challenge.

NBBJ | Jan 17, 2023

Why the auto industry is key to designing healthier, more comfortable buildings

Peter Alspach of NBBJ shares how workplaces can benefit from a few automotive industry techniques.

NBBJ | Aug 4, 2022

To reduce disease and fight climate change, design buildings that breathe

Healthy air quality in buildings improves cognitive function and combats the spread of disease, but its implications for carbon reduction are perhaps the most important benefit.

NBBJ | Feb 11, 2022

How computer simulations of vision loss create more empathetic buildings for the visually impaired

Here is a look at four challenges identified from our research and how the design responds accordingly.

NBBJ | Jan 7, 2022

Supporting hope and healing

Five research-driven design strategies for pediatric behavioral health environments.

NBBJ | Nov 23, 2021

Why vertical hospitals might be the next frontier in healthcare design

In this article, we’ll explore the opportunities and challenges of high-rise hospital design, as well as the main ideas and themes we considered when designing the new medical facility for the heart of London.

NBBJ | Aug 18, 2021

20 years after developing the first open core hospital design here is what the firm has learned

Hospitals have traditionally used a “racetrack” layout, which accommodates patient rooms around the exterior and situates work areas and offstage functions in a central block.

NBBJ | Jun 8, 2021

As many storefronts sit empty, 3 opportunities to rethink the ground floor of buildings

The vitality of ground level commercial space is about much more than the future of retail.

NBBJ | Apr 13, 2021

Rethinking well-being at work

The four levels of health that support long-term success.

NBBJ | Feb 25, 2021

A healthier planet starts with hospitals

Eleven strategies to reduce energy use and increase wellbeing.

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021