flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

Solving complicated research questions in interdisciplinary facilities

University Buildings

Solving complicated research questions in interdisciplinary facilities

Interdisciplinary life science projects require depth of expertise in traditional markets and forward-thinking ideology to support research, education, and scientific advancement.


By STEVEN WILL, DPR CONSTRUCTION | April 24, 2023
Weill Neurosciences
The Weill Neurosciences Building brings together top neuroscientists in neurology, psychiatry, neurosurgical, and other clinical research programs to discover advances in neurodegenerative disorders. Photo: Kyle Jeffers

Demand for flexibility in the built environment has never been more essential. Traditional single-use buildings have evolved into more dynamic environments, pushing interdisciplinary research organizations to adapt. As capital streams shift and traditional returns on investment are pressed, programmatic innovation and collaboration have become a focus for investment.

Cohabitation of life sciences, educational research, and healthcare users has disrupted the typical real estate model. Partnerships are blossoming around scientific research and development. Funding priorities and talent development have led to strategic partnerships for both dedicated facilities and ongoing operational collaboration.

These merging markets are yielding programmatic shifts in ideology and enabling more robust facility development. However, interdisciplinary projects require both depth of expertise in traditional markets and forward-thinking ideology to support research collision and advancement. As interdisciplinary organizations strive to not only seek to attract the best faculty and researchers, but also to develop facilities that can stand the test of time.

The lessons of a few projects can serve as guideposts for institutions planning similar interdisciplinary facilities. Specifically, project owners should consider:

  • the value of more collaborative building methods
  • close collaboration with end users
  • the benefits of partners who can leverage sector-specific knowledge to their advantage.

Let’s look at several examples.

UCSF WEILL NEUROSCIENCES BUILDING: CO-LOCATING MULTIPLE DISCIPLINES IN NEW WAYS

The 282,000-sf UCSF Joan and Sanford I. Weill Neurosciences Building on the University of California San Francisco’s Mission Bay Campus is a collaboration of neurology, psychiatry, neurological surgery and clinical spaces that historically would not be co-located. Top neuroscientists from those disciplines collaborate in one space in the hopes of advancing research and solving problems relating to disorders like dementia, Alzheimer’s, and Huntington’s disease. Working together allows interdisciplinary research that intentionally seeks diversity in discipline expertise in the pursuit of breakthrough discoveries.

UCSF Weill Neurosciences Building at 1200
UCSF Joan and Sanford I. Weill Neurosciences Building, designed by SmithGroup and Mark Cavagnero Associates, is the headquarters of one of the largest neuroscience complexes in the world. Photo: Tim Griffith

The design and construction of interdisciplinary facilities must allow for dynamic exchange, requiring more thoughtful team composition and collaboration. As a result, the contractor, designer, and other key partners co-located their teams to allow for quick collaboration, similar to design-build or integrated project delivery.

Such buildings are complex, as they must mirror near-term demands but also enable long-term flexibility as research evolves. For that reason, three floors of UCSF’s six-story building are made up of clinical and patient treatment space requiring a particular attention to detail as it relates to healthcare and support for the patient experience model. The research spaces above have their own unique laboratory and research demands.

This intersection of higher education and healthcare created unique demands for building performance and required the expertise of a builder familiar with each respective market and the ability to be nimble with other project partners. Institutions should consider more collaborative team setups to gain value throughout the project.

ASU HEALTH FUTURES CENTER: A NEW MODEL FOR HEALTHCARE EDUCATION AND DELIVERY

Such a partnership between healthcare systems and higher education is evidenced by the Arizona State University Health Futures Center, in Phoenix. This innovative medical learning facility, a collaboration between ASU and the Mayo Clinic, represents a new model for healthcare education and delivery in the U.S.

Designed by CO Architects and DFDG Architects, the 150,000-sf ground-up facility was built with the goal of creating collaborative spaces that facilitate future-focused education and training. ASU nursing students learn to treat patients through hands-on training in clinical skills labs with simulation exam and operating rooms. There is also a home care lab with a mock apartment where students learn to assist patients in their homes, with a pathway connecting the Health Futures Center to the adjacent healthcare campus.

ASU Health Futures Center
The Arizona State University Health Futures Center is an innovative medical learning facility that allows nursing students to learn to treat patients through hands-on training—a partnership between healthcare systems and higher education. Photo: Bill Timmerman

Research components include a med-tech innovation accelerator, as well as biomedical engineering and informatics research labs. The facility allows various ASU programs to study and work together, including the College of Health Solutions, College of Nursing and Health Innovation, and the Fulton Schools of Engineering, and Entrepreneurship and Innovation. Collaboration programs within the Mayo Clinic also allow for interdisciplinary research and exchange.

Achieving all stakeholder expectations requires a deep understanding of the needs of the various end users in the facility. That knowledge, especially when applied early in the design process, can yield insight that affects both design and construction.

For example, DPR’s precon team developed a predictive cost-analysis tool that enabled the construction and design teams to accurately identify where the budget was being allocated based on programming. This unique and interactive tool helps the team incorporate critical end-user design and facility function needs while keeping the project on budget.

USC MICHELSON CENTER FOR CONVERGENT BIOSCIENCE: MERGING LIFE SCIENCES AND HIGHER EDUCATION

The collaboration between traditional life sciences and higher education is exemplified by the University of Southern California’s Michelson Center for Convergent Bioscience, Los Angeles.

USC Michelson Center
The University of Southern California’s Michelson Center for Convergent Bioscience is the nucleus of USC’s research programs by bringing together collaborative cross-disciplinary studies. Photo: Andrew Leeson

Designed by HOK Architects, the 190,000 sf research facility houses 30 labs, Class 100 and 1000 nanotechnology clean rooms, imaging suites, conference rooms, and classroom space. Hundreds of researchers and students employed in the flexible, open, shared labs collaborate in the fields of biological science, imaging, engineering, nanofabrication and cross-disciplinary studies.

USC Michelson Center houses 30 labs
The Michelson Center houses 30 labs, nanotechnology clean rooms, imaging suites, and conference and classroom space. Photo: Andrew Leeson

Cross-disciplinary research, education, and capital investment are complicated by varying needs and goals that complicate alignment and adjacency strategies. Design and construction for these atypical facilities requires an acute understanding of higher education, healthcare, and life science environments. While adjacency drives research collision, it complicates systematic design and construction. Program transparency and well-articulated needs are required to translate into collaboratively built environments. An acute understanding of each individual modality is imperative to yield cumulative results.

Successful delivery teams are comprised of experts in each respective field engaged early in the process to identify, organize, and execute the project. These teams can help in planning stages due to their familiarity with sector-specific supply chains. As colleges and universities closely watch every dollar, knowledge such as this can make a significant difference.

FAU STILES-NICHOLSON BRAIN INSTITUTE: NEUROSCIENCE RESEARCH AND EDUCATION IN THE COMMUNITY

Another example of a cross-disciplinary facility recently opened in Jupiter, Fla. Designed by PGAL, the FAU Stiles-Nicholson Brain Institute is a 58,000-sf facility that brings together neuroscience research, education, and community engagement for the study of brain and behavioral disorders.

Designed to be a collaborative hub of study and research for scientists and students in the field of neuroscience, the interdisciplinary nature of the facility will foster collaboration and connect those in the field.

Florida Atlantic University's Stiles-Nicholson Brain Institute brings together neuroscience research, education, and community engagement for the study of brain and behavioral disorders.

The center aims to leverage recent advancements in data science and advanced optical technologies to develop approaches to study brain disorders such as Alzheimer’s disease, autism, addiction, and brain cancer, with the goal of discovering new therapies and treatments. The core laboratory will provide educational experiences for undergraduate students, graduate students, and postdoctoral fellows. There are also spaces for lectures and community events.

FAU core laboratory
The core laboratory at the FAU Stiles-Nicholson Brain Institute will provide educational experiences for undergraduate and graduate students and postdoctoral fellows. Photo: Dana Hoff Photography

The addition of the Stiles-Nicholson Brain Institute expands the life science research cluster that includes the Max Planck Florida Institute for Neuroscience and the Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology. Forward-thinking endeavors are creating market momentum in the public and private sectors to infuse capital, research, and innovation in the hope of scientific breakthroughs. Just as collaboration will take place inside, the successful delivery of the facility also relied on collaboration.

Max Planck FLA
Research at the Max Planck Florida Institute for Neuroscience focuses on bioimaging to visualize microscopic molecular processes with the aim of fostering clinical applications. Photo: NY Focus Photography

THE GOAL: NEW DISCOVERIES, NEW THERAPIES, NEW DRUG TREATMENTS

The prospects offered in today’s rapidly evolving and expanding interdisciplinary research and development ecosystem are certain to result in new discoveries. The rewards to the early adopting and forward-thinking institutions and industries pursuing collaborative design and construction methods for interdisciplinary research facilities are becoming evident almost daily.

New discoveries, product patents, therapies, and drug treatments are being produced at exponential rates, and the future for additional positive change in this ecosystem is both exciting and promising.

ABOUT THE AUTHOR

Steven Will, Director of Development, leads the market strategy for DPR Construction, focusing on operational and strategic engagement spanning DPR’s core markets. He holds a master’s in construction management from the University of Florida.

PROJECT TEAMS

UCSF Joan and Sanford I. Weill Neurosciences Building

University of California San Francisco (owner), SmithGroup and Mark Cavagnero Associates (architects), Degenkolb Engineers (SE), Jacobs (CM), and DPR Construction (GC)

Arizona State Health Futures Center

Arizona Board of Regents/Arizona State University (owner), DFDG Architects (executive architect), CO Architects (interior designer), Advanced Structural Engineering (SE), Wood, Patel & Associates (CE), Affiliated Engineers (MEP/FP, lighting designer), Jeremiah Associates (acoustical, AV/IT systems consultant), Floor Associates (landscape architect), and DPR Construction (GC)

University of Southern California’s Michelson Center for Convergent Bioscience

University of Southern California (owner), HOK (designer), John A. Martin & Associates (SE), ACCO Engineered Systems (mechanical engineer), Vanderweil Engineers (MEP), CSI Electrical Contractors and DAART Engineering Company (electrical engineers), AGI (laboratory planner), and DPR Construction (GC)

FAU Stiles-Nicholson Brain Institute 

Florida Atlantic University (owner), PGAL (designer), Johnson Structural Group (SE), Kimley-Horn & Associates (CE), Bard Rao + Athanas Consulting Engineers (MEP), and DPR Construction (GC)

Max Planck Florida Institute for Neuroscience

Max Planck Institute (owner), ZGF Architects (designer), PGAL (associate architect), Bard Rao + Athanas Consulting Engineers (MEP), Research Facilities Design (laboratory designer), and DPR Construction (GC)

 

Related Stories

Healthcare Facilities | Apr 16, 2024

Mexico’s ‘premier private academic health center’ under design

The design and construction contract for what is envisioned to be “the premier private academic health center in Mexico and Latin America” was recently awarded to The Beck Group. The TecSalud Health Sciences Campus will be located at Tec De Monterrey’s flagship healthcare facility, Zambrano Hellion Hospital, in Monterrey, Mexico.

University Buildings | Apr 10, 2024

Columbia University to begin construction on New York City’s first all-electric academic research building

Columbia University will soon begin construction on New York City’s first all-electric academic research building. Designed by Kohn Pedersen Fox (KPF), the 80,700-sf building for the university’s Vagelos College of Physicians and Surgeons will provide eight floors of biomedical research and lab facilities as well as symposium and community engagement spaces. 

Sports and Recreational Facilities | Apr 2, 2024

How university rec centers are evolving to support wellbeing

In a LinkedIn Live, Recreation & Wellbeing’s Sadat Khan and Abby Diehl joined HOK architect Emily Ostertag to discuss the growing trend to design and program rec centers to support mental wellbeing and holistic health.

Student Housing | Feb 21, 2024

Student housing preleasing continues to grow at record pace

Student housing preleasing continues to be robust even as rent growth has decelerated, according to the latest Yardi Matrix National Student Housing Report.

University Buildings | Feb 21, 2024

University design to help meet the demand for health professionals

Virginia Commonwealth University is a Page client, and the Dean of the College of Health Professions took time to talk about a pressing healthcare industry need that schools—and architects—can help address.

Higher Education | Feb 9, 2024

Disability and architecture: ADA and universal design at college campuses

To help people with disabilities feel part of the campus community, higher education institutions and architects must strive to create settings that not only adhere to but also exceed ADA guidelines.

Laboratories | Jan 25, 2024

Tactical issues for renovating university research buildings

Matthew Plecity, AIA, ASLA, Principal, GBBN, highlights the connection between the built environment and laboratory research, and weighs the benefits of renovation vs. new construction.

University Buildings | Jan 18, 2024

Houston’s Rice University opens the largest research facility on its core campus

Designed by Skidmore, Owings & Merrill (SOM), the 251,400-sf building provides students and researchers with state-of-the-art laboratories, classrooms, offices, and a cafe, in addition to multiple gathering spaces.

Sponsored | BD+C University Course | Jan 17, 2024

Waterproofing deep foundations for new construction

This continuing education course, by Walter P Moore's Amos Chan, P.E., BECxP, CxA+BE, covers design considerations for below-grade waterproofing for new construction, the types of below-grade systems available, and specific concerns associated with waterproofing deep foundations.

University Buildings | Jan 15, 2024

The death of single-use university buildings

As institutions aim to improve the lives of their students and the spaces they inhabit, flexible university buildings may provide an all-in-one solution.

boombox1 - default
boombox2 -
native1 -

More In Category




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021