How reverse engineering nature can spur design innovation

It’s not enough to copy nature. Today’s designers need a deeper understanding of environmental nuance, from the biome in.

January 30, 2014 |
Life at HOK

The William Jefferson Clinton Childrens Center (WJCCC) in Port-au-Prince is designed to replace an orphanage severely damaged in the 2010 earthquake. HOKs Thomas Knittel took inspiration from the kapok tree, a native Caribbean species that stores water internally and sheds its leaves in times of drought.

This post originally appeared on the Fast Co.Exist blog.


Is it possible to really emulate nature? That question powers a new era of design in which the built environment mimics biology’s processes. Reverse engineering is one approach that bridges the gap between designers and nature.

The concept of reverse engineering is simple: take things apart to discover how they function. But reverse engineering devoid of understanding won’t work. Designers aiming to mimic natural systems in the built environment must draw from a deep knowledge of nature’s nuances, from the largest biome to the most specific plant structure.

HOK’s collaborations with scientists–a practice Biomimicry 3.8 calls Biologist at the Design Table, or BaDT–lend context. For example, how does a leaf’s functionality contribute to the rainforest’s larger purpose?

Jamie Dwyer, a biologist and design strategist for Biomimicry 3.8, likens the “biome-in” approach to a puzzle.

More posts at Life at HOK

Q+A: Patrick MacLeamy, HOK’s Chairman and CEO

Your Next Lamp Purchase: Tread Cautiously

HOK 2013: Year in Review

“We ask, ‘What’s the big picture, what are all of the pieces that make it happen, and what pieces are we trying to mimic?’” Dwyer says. “At the ecosystem level, for example, there are tons of little things that add up to help the rainforest change the atmosphere.”

When we achieve a holistic understanding of the natural world, it becomes a catalyst for design innovation. In Los Angeles, a half-inch of rain produces 3.8 billion gallons of water. But due to runoff, the city must still import 88% of its water. Innovators are taking steps to mitigate the city’s water issues. Andy Lipkis of TreePeople, for example, has developed forest-inspired technologies to help capture rainwater.

Designing an ecologically functioning landscape can only do so much. If buildings are isolated, the landscape falters. A marriage of landscape and built environment should be our goal. Recent HOK projects in Hawaii, San Francisco, and Haiti demonstrate a multidisciplinary approach to mimicking and protecting natural systems at the product, building and city level.

On Oahu’s Ford Island, a new campus for the National Oceanic and Atmospheric Pacific Regional Center links two historic Pearl Harbor hangars designed by Albert Kahn. Set to open in February, the facility includes a tsunami warning center and national marine sanctuaries, protecting its Pacific surroundings while taking inspiration from the ocean. Water from a seawater well cools prevailing breezes and ventilates the building, sans air conditioners or mechanical fans–one example of how we reverse engineered a specific ecological feature while meeting ecosystem needs.


WJCCC Energy Cycle


Similarly, in San Francisco, HOK designers are working on an historic structure: the Museum at the Mint, which was just a few hundred feet from marshland when it was built in the early 19th century. Because we believed water could play a crucial role in our design strategy, we reverse engineered elements of the wetland past.

Local biologists offered context, explaining how native Bay Area plants use precipitation and fog to their advantage. Many ferns and succulents are covered in tiny bumps that capture rainwater, a mechanism we borrowed. The raised screen we designed, outfitted with ceramic dots, provides 100% more surface area for moisture collection–crucial in San Francisco’s Moist Temperate Coniferous Forest Biome.

Not every project offers a clear contextual view. Only 2% of the native forest remains in Port-au-Prince, Haiti, site of the future William Jefferson Clinton Children’s Center. HOK designers, working under strict budget constraints, lacked on-site biologists. To develop our strategy, we gained ecological insight wherever we could: from a relief worker who once worked as a biologist in the area, longtime local families,, and our Genius of Biome report.


Haiti’s native kapok tree inspired the WJCCC’s facade.


Haiti’s native kapok tree inspired the building façade. Protecting the building like tree bark, a “boundary layer” will shield exterior walkways and vertical surfaces from direct sunlight while allowing for daylighting and natural ventilation. Likewise, the structure’s branching support system is kapok-inspired, with mother limbs measuring twice the cross-sectional area of daughter limb pairs–a 500-year-old Leonardo da Vinci observation that deepens our context.

Practiced from the biome-in, reverse engineering should result in design that meets community and ecosystem needs. It’s challenging, but necessary to create a bio-inspired built environment.

About the author
Thomas Knittel, AIA, LEED AP BD+C, is a Senior Principal in HOK’s Los Angeles studio. More.

The structure’s branching support system is kapok-inspired, with mother limbs measuring twice the cross-sectional area of daughter limb pairs.
Life at HOK | Life at HOK

HOK is a global design, architecture, engineering and planning firm. Through a network of 24 offices, HOK provides design excellence and innovation to create places that enrich people's lives and help clients succeed. Life at HOK is a group blog authored by the firm’s creative people across the world. Visit

Related Blogs

January 06, 2015

Technology is transforming the guest experience and enabling designers to reimagine a new hospitality-orien...

read more

Photo: HOK

December 28, 2014

Taking a cue from the hospitality industry, airport executives are seeking to make their facilities feel mo...

read more

Photo: HOK

November 17, 2014

During the past five years, the worlds of hospitality and corporate real estate have undergone an incredibl...

read more

Walter Reed National Military Medical Center Healing Garden. Rendering: HOK

October 13, 2014

I have spent the last several months writing about healthy workplaces. My research lately has focused on st...

read more

Photo: HOK

September 09, 2014

As part of our ongoing studies of how building design influences human behavior in today’s social media-dri...

read more

Photo: HOK

August 16, 2014

New technology and changing pedagogies are influencing how to best teach a generation of learners who have...

read more

Photo: courtesy HOK

August 05, 2014

A report from Deloitte highlighted how driverless cars could dramatically alter car ownership in the future...

read more

In a new report, HOK and Biomimicry 3.8 partnered to study how lessons from the temperate broadleaf forest biome, which houses many of the worlds largest population centers, can inform the design of the built environment.

May 19, 2014

In a new report, HOK and Biomimicry 3.8 partnered to study how lessons from the temperate broadleaf forest...

read more

Virtual collaboration tools have come a long way

October 30, 2013

For a while now companies have been advised that flexibility is a key component to a successful workplace s...

read more
October 28, 2013

Our collective desire to live in cities has never been stronger. According to the World Health Organization...

read more

Add new comment

Your Information
Your Comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
By submitting this form, you accept the Mollom privacy policy.
Overlay Init